
M r9..14.- A NME APPROACH TO THE ANALYSIS AND CONTROL OF LAUGE 1/2
SPACE STRUCTURES PHASE l(U) GENERAL ANALYTIC CORP
RTENS_ M ADAOAN 12 RR 98 ORC-08I RFOSR-TR-66-0702

UISLtSSIFIED F496"-O7-C-"90 F/O 22/5

imomhhhhmhhhhhl
uirnrnrnrnmmtI

Ihhllllllllhl
lllllllllllhl



1.0 jjm 2
ILL

1.25 A11111

UTION TEST CHART

w w w

S '4 .%~



-77 ~ <~ N.'.:7- '-

AD-A 198 143 i-I/~

4-9.

ISS# Il, C GENERAL ANALYTICS CORPORATION' -..t.x9'f .

*~~J I'' tX

i. r'.k Z11 :jI

r4mniAi~R d u
3' NWU Isd.i 4 34rEYF TAS TLp O DI %vtA<'

77L -F-n- *-. Al 54 X- .

-'a.'- tA

1,

8 8 - " oo
lit t~cI'4~.V ~"'C tV~tti '1 .155 Clyde Road Athens, Georgia 30605 au



A NEW APPROACH TO THE ANALYSIS AND CONTROL

OF LARGE SPACE STRUJCTUJRES

S.B.I.R. Phase I

Air Force Contract F49 620-87-C-0098

October 15, 1987 - April 15, 1988

Dr. Anthony K. Amos, Project Manager

Technical Report G.A.C. 881

GENERAL ANALYTICS CORPORATION

155 Clyde Road, Athens, Georgia 30605 Q T IC
(404) S48-8441 fEL E CT D

AUGQ1 6 198

.p~ ~ mill~ ..



UNCLASSIFIED
I1CWaI:Y CUA I5IADI06 1JU5t~o p14,

a.-"foit iclat CAS~f1110 REPORT DOCUMENTATION PAGE

UNCLASSIFIED II.04/Aiv AILF~

NIs.SCAT C35IIC~O A0WftVIOSTIBUtONAVAILAIIY of I~tft

II.1LASAT0?1WWpo CIDl APPROVED FOR tUBLIC RIELEASE;
Nb/DCASflAINOWGAIGO4UL. DISTRIBUTION UNLINI7AED

a. FtIVORMING ORGANIZATION PAPOfR NuMBIRIS) S MOMIORING ORGANIZAIION arIOAT NtiBi I 0
G. A. C. 881 . AFO6R..Th 88 V 2

F"a. NAfl OF EORNG ORGANIZATION . b OFFICE SYL-BOL a.NAME Of MONITORING ORGMwZAWION

(.CnerR A11X~tirCora. AFOSR ,W*a:C .)

155 Clyde Road 4c_ c-n C
Athens-, GA "3060t. Boiling AFB, D. C.

Be. tAMa Of FUIJNIGSONSO11WG 11b OFFI SYMBOL jt. RCMEN~T INSTRUMENT IGEIICKAIION ##UMBIA

~jj~IION~ 2  I Nti Contract Number- F49620-87-C-0098
&. :DORES (Ct).Stal. liCa~i- 5 SOURtCE OF FUNDING NUMBERS

m p LA t PROGRA PIOJICT TASA R UNIT
BligAFB, D. C. ELIMNT NO NoNO ACCESSION NO

olig N/A I[22/ 0f N/A

A New Approach to the Analysis and Control of Large Space Structures.

11 PERSONAL AUT11OR411

.Dr. George Adomian

16 SUPPLEMENTA NOTATION

51COIA TI CODES - Vs SuBIECT EriMS tcomrws an qm n ipv etrne 1*fttle any .EM4 b p-' rig.

FIELD -4tu IRU SUB-GROUP 1 4 ecomposition method; Distr~~ted control; Heating _541 f
<I I ~ atrix Riccati equation;; Nonlinear stochastic control;

I =Un'tja1 tdiffential eguations: Vibration. 44!.
(Comon-AC Iwt'esiS .vq o If otous.8aV, i elnE flbf by dowi V411@f

Nonlinear ordinary and partial differential equations modelling problems
of vibration, heating, and control systems ire analyzed using the author's
decomposition method. The new approach is also applied to nonlinear sto-

~,chastic distributed control systems using the Hamiltonian formulation ofifcontrol theory.
The matrix Riccati equation is also solved, providing another

approach to control theory.

14vo"0 D.SIUINavAIABtuttf 00 hWACt It~ ABSTRACT SECURoITY CLASSIFICATION
IUNCtAISIFEO4DMIMIEO ESAME AS A"_ T O S I R U14CLASSIIFIED

)16 14AVI 0 IESPOftIIBL INOOViOUML no5 WIL1019O041 bmkfe*A~ oft OffIC 04.S

Dr. Anthon Amo 1 _2-57-4917
00FR 4.B MAR il AA QIfe... -a 1 beo W011#1 lftwsd :1ls

41 CUILL A 11 At Of~!±! Of G

£Ue~ue @4..U~Ia's eOrrt



in to 4

LLI Or Q.L 14 4R C

LL- X: ) S

C to

= ti t-j

Lii *
., * §v t

:z, to.

C -. t)

-I I U' 
" ,

C/,

41 tO

t) to Q) PU 104-
Q) 10 tjt

to 4 to t)

6LZ ~ts t-4 to t o

t C )

C) too

Jr? C. t3t4S44 -

QSUALITY
Lii .0 INPcr

Aeoessiofl For

Ito DTU TAB I

Justifioatio-

0 C~w 1zto

Q- §Q9 3Distribution/

(D Availability Codes

M1 4o Dis Special

.i CO --Z *



TABLE OF CONTENTS

Page Nwnber

OBJECTIVES AND ACCOMPLISHMENTS ii

EXECUTIVE SUMMARY vi

PUBLICATIONS IN REVIEWED JOURNALS CREDITED TO CONTRACT viii

PRINCIPAL ACCOMPLISHMENTS ix

INTRODUCTION 1

INTRODUCTION TO THE DECOMPOSITION METHOD 3

ILLUSTRATIONS OF THE DECOMPOSITION METHOD 6

TABLE: n-TERM APPROXIMANT Cn FOR n = 12 11

APPROXIMATION OF NONLINEARITIES USING A n POLYNOMIALS 13

COMPUTATIONAL TIME 17

DECOMPOSITION TREATMENT OF NONLINEARITY COMPARED
WITH LINEARIZATION 22

TABLE: A COMPARISON OF ACTUAL AND LINEARIZED SOLUTIONS
(EXPONENTIAL NONLINEARITY) 31

tABLE: ERROR IN LINEARIZED SOLUTION
(FOR A HYPERBOLIC SINE NONLINEARITY) 35

SERIES SOLUTION CONVERGENCE COMPARED WITH NUMERICAL -

INTEGRATION 36

TABLE: COMPARISON OF DECOMPOSITION AND NUMERICAL
INTEGRATION 37

HEAT AND DIFFUSION 38 _

SOME SPECIAL CASES DEPENDENT ON STRUCTURE AND MATERIALS 39

ONE-DIMENSIONAL HEAT EQUATION 39

THREE-DIMENSIONAL HEAT EQUATION 40

BOUNDARY CONDITIONS FOR HEAT PROBLEMS 41

SOLUTION OF A TWO-DIMENSIONAL HEAT-FLOW EQUATION 43

SOLUTION OF A TWO-DIMENSIONAL HEAT-FLOW EQUATION WITH A
HEAT SOURCE g 44

I iii



TABLE OF CONTENTS - CONTINUED

THREE-DIMENSIONAL GENERAL CASE 46

THREE-DIMENSIONAL LINEAR CASE 50

TWO-DIMENSIONAL HOMOGENEOUS HEAT EQUATION 52

CONDUCTIVITY DEPENDENT ON x 56

NONLINEAR HEAT EQUATION IN ONE-DIMENSION 59

NON-UNIFORM CONDUCTION OR NONLINEAR BOUNDARY CONDITIONS 61

SELF-SHADOWING LATTICEWORK STRUCTURES IN ORBIT 64

TRANSIENT HEAT TRANSFER 75

TRANSIENT HEAT CONDUCTION 77

NONLINEAR OSCILLATIONS 79

A SIMPLE NONLINEAR OSCILLATOR EXAMPLE 83

SMALL-AMPLITUDE CASE 84

LARGE-AMPLITUDE CASE 86

THE DUFFING AND VAN DER POL OSCILLATORS 89

STATISTICAL LINEARIZATION 89

THE DECOMPOSITION METHOD 90

SOLUTION OF THE GENERAL CASE OF DUFFING'S EQUATION 95

SOLUTION OF VAN DER POL EQUATION 96

STOCHASTIC OSCILLATIONS 96

COMPUTATIONAL ASPECTS OF STRUCTURAL MECHANICS 98

STOCHASTIC STRUCTURAL DYNAMICS 98

ACTIVE DAMPING OF RESPONSE OF LARGE SPACE STRUCTURES 103

A FINAL EXAMPLE AND.GENERAL REMARKS 105

INTRODUCTION TO THE PROBLEM OF CONTROL 109

AN OUTLINE OF OUR APPROACH TO CONTROL 110

FINAL REMARKS 114

iv



TABLE OF CONTENTS - CONTINUED

A LOOK AHEAD 116

REFERENCES ON DECOMPOSITION METHOD 117



EXECUTIVE SUMMARY - PHASE I
S

In the design and operation of large space structures, the effects

of time dependent and random vibrations, heating and cooling, control

forces, etc., lead to severe analytical problems because of nonlinearities,

time-varying effects such as self-shadowing in trusses, couplings, etc.

These problems lead to model equations which can be differential, partial

differential, or integro-differential equations involving complex

nonlinearities and stochastic parameters.

Our objective is to identify these problems and to demonstrate that

the Adomian decomposition method provides a new useful approach to such

problems and that the approach provides physically more realistic and

correct solutions, and, further, that tremendous computational effort

can be avoided.

The saving of computer time results from the avoidance of discretized

methods and the ability to obtain a continuous analytical solution. This

not only saves computation time but makes it easier to see functional

dependences.

The fact that solutions are necessarily more correct arises from

avoidance of the conventional linearization and restrictive assumptions

normally required. The ease and accuracy of the method is demonstrated in

a variety of selected examples and problems.

In addition to the fulfillment of the above contract objective,

some very significant other and additional new insights and progress have

been achieved to be expanded on in Phase II. We have established that

Vi
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parabolic, elliptic, and hyperbolic equations can all be solved by the

decomposition method (there is no other method that can do this

analytically.

Secondly we have seen as a direct result of this study that we can

generalize Kalman filters to a continuous nonlinear stochastic case

without white noise limitations and that we can generalize control theory

analytically to nonlinear stochastic multidimensional control theory for

space structures, an insight of the greatest significance to be an

important area uf our Phase II proposed work.
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Principal aocompliskiente:
S

1) The contract statement of work has been fulfilled in establishing

that the decomposition method is valuable in the basic types of

typical model equations that will arise in analysis of large

space structures such as vibration, heating, etc. It has been

shown that the decomposition method solves typical nonlinear and

stochastic and multidimensional model equations without customary
6

restrictive and limiting assumptions or procedures involving

excessive computation.

2) Additional insights as a result of this study are:

a) the procedure will apply to parabolic, elliptic, and hyperbolic

equations, a unique feature and advantage of the decomposition

method, which means rather global applicability to aerospace

problems.

b) Control theory can be generalized to nonlinear stochastic and

multidimensional cases for application to space structures

and will be studied in detail in Phase II. K3lman filter

theory can similarly be generalized to the case of nonlinear

stochastic operators in both state and measurement equations.

ix

ix



I NTRODUCTI ON

The large structures contemplated would be constructed in space.

Because of the limitations on launching massive payloads, it is clear

that these structures will be made of lightweight material and will

necessarily be flexible and easily excited into vibrations.

Analytical problems will arise in designing large space structures

in which physically realistic and accurate soluitions will be critical.

Such designs must consider weight, sizes, stiffness, thermal and

mechanical distortions, stresses due to gravity and positioning thrusts.

Some specific analytical problems will involve vibration, heating and

cooling, multidimensional control, and structural problems arising from

random support motion and random fluctuations of the system dynamic

properties. i '

In large space structures, vibrations can result from machinery,

thermal transients, and operational maneuvers. The response to such

vibrations depends on structural parameters (stiffness, mass, damping)

and the ex 2rnal excitations and on the control system.

Vibration is hardly the only problem. There will be effects of

severe heating (e.g., on sun-illuminated parts) and severe cooling on

dark sides with resulting exapnsions, contractions, and stresses on the

structure. Additionally there will be the problem of nonlinear stochastic

multidimensional control of a large complex structure with limited

rigidity, and the interactions through the central system as a result of

frequencies introduced in the control loop through rotation, bending,

- - - - -
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expansion and contraction. The means employed for passive damping also

complicate matters since modifications of mass, stiffness, and damping

affect the control design.

If a flexible structure were designed to be rotated at a constant

angular velocity, then complex Coriolis and centripetal accelerations

as well as accelerations due to structural deformations would have to

be taken into account. Thus the rotational motions are a factor in

dynamic analysis. Ordinarily, such analyses immediately rely on

linearizing the governing equations of motion. The decomposition method,

on the other hand, allows us to avoid this restrictive procedure.

The fact that the structural materials will be nonhomogeneous

composites will result in random fluctuations in dynamic properties.

Furthermore, once the structure begins to vibrate, structural parameters

may fluctuate. Thus one must be able to deal with cases in which the

stiffness or damping are random functions of time rather than constants.

The equations involved will then be stochastic differential equations in

the sense used by the principal investigator in the referenced works

i.e., differential equations with stochastic process coefficients rather

than the much simpler case with only stochastic inputs - also called s.d.e.

by many investigators.

In the so-called "disordered systems" where parameters are random

variables we have random boundary-value problems. The decomposition

method can deal with boundary operator equations which are random,

nonlinear, or even coupled.

See particularly references [1,2].

Assuming that systems parameters are merely uncertain rather than
fluctuating in time.

n~~m ~ .'V . '
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One should consider various types of nonlinearities in order to gain

insights into possible unusual or growing structural vibrations that might

lead to failure. Thus our ability, when using decomposition, to consider

strong and composite nonlinearities is of extreme importance.

Introduction to the Decoposition Method:

Real physical systems are nonlinear and stochastic; linearity and

determinism are special cases. Realistic modeling will lead to systems

of ordinary or partial (nonlinear stochastic) differential equations.

Our model equations will involve nonlinearities and/or stochastic

parameters, inputs, and initial/boundary conditions.

The methods that have been available so far to solve such systems

have limitations which require close examination. It has become

standard to linearize nonlinear equations or to assume they are "weakly

nonlinear." In the stochastic case, resort to statistical linearization

is a common procedure. Stochasticity in parameters is quite commonly

ignored. Inputs which we know to be stochastic processes are assumed

to be delta-correlated or to represent "small" fluctuations. Thus unless

systems are essentially linear and deterministic, i.e., unless nonlinearity

and stochasticity are not significant factors, what is commonly being

done - whether apparent or not - is to change the system physical model

to a mathematically more tractable one within the capability of the

available mathematics. The contrast between "closed-form solutions"

and "approximate solutions" has been exaggerated and, sometimes, not even

clearly understood. The reason is simple. All modelling is approximation.

In modelling, we always have a compromise between realistic modeling and
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tractability in our available methodologies. The model actually solved

by conventional methods is often not the model we had wanted to solve -

which was, of course, already and necessarily an approximation to reality.

With the model forced into a tractable form by restrictive assumptions

and techniques such as linearization, one can then find "nice" closed-form

solutions. However this only means we have an identifiable or well-known

series such as sin x = x - x3/3! + -.. as the solution for a mathematically

simplified problem.

* Our method of attack is a continuous approximation method which yields

a rapidly converging series solution* (which can sometimes be summed into

a familiar closed form).

What is significant is that it does not require linearization. It

solves nonlinear problems. We do not limit stochastic cases to perturbation

theory, Wiener processes, delta-correlated processes, Markovian assumptions,

closure approximations, or quasi-monochromatic assumptions.

This method is computationally convenient. It does not require

discretization into grids with its resulting massive computation and

approximation between computing points. It yields a continuous analytic

solution into which we then put numbers. We can then see the rapid

stabilization of the solution as terms are calculated.

Such a methodology - we have called it the "decomposition method" -

which yields solution for a model retaining actual nonlinearity and

stochasticity, seems preferable to a nice mathematical solution - a so-called

exact solution - to an artificial or simplified problem in which one

A proof of the convergence has now been made by the principal
investigator and is in publication.
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linearizes or assumes unphysical processes. For example, most nonlinear

stochastic oscillator problems assume only stochastic excitation and

require hierarchy methods and closure approximations. However, such

assumptions have been shown to be equivalent to perturbation methods.

In a case where the perturbation method is not adequate to the problem,

e.g., where fluctuations are large, decomposition offers a more accurate

solution. Decomposition is the more general method always resulting in

a correct solution. In the cases where perturbative methods have been

adequate, or linear and/or deterministic solutions would be sufficient,

decomposition will yield the smne solution.

In large (flexible) space structures a central problem will be

random, as well as periodic, vibrations. For random vibrations, often

the usual treatments, such as the Fokker-Planck-Kolmogorov, perturbation,

statistical linearization, Gram-Charlier expansions, averaging and

cumulant closure methods, etc., are less than desirable for many reasons

(particularly more limitations and less accuracy in many real problems).

Restrictive approximations that are made, e.g., white noise excitation

and deterministic parameters, Wiener processes, Gaussian behavior, etc.,

may well result in mathematical solutions which are incomplete or which

deviate from the actual physical behavior.

We believe the decomposition method offers a new approach with a

significant potential for major contributions not possible otherwise

because of the avoidance of restrictions necessary in other approaches.

See reference [l].

See references [1] and [2].° 46
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ILLUSTRATIONS OF THE DECOMPOSITION METHOD

0

Solution of nonlinear equations arising in the modeling of a physical

system generally begins with some form of linearization, assumptions of

weak nonlinearity, and "smallness." Yet physical systems are nonlinear,

and real systems generally involve random fluctuations. The general case

is a nonlinear stochastic system, and "linear" and "deterministic" are

epecial cases. We aim to solve physical problems realistically, not

simply artificial versions of those problems selected so as to make the

mathematics tractable. It is true that we have gone a long way with

the earlier methods, and in many problems they are completely adequate;

in others, they are a good first approximation to gain some insight. Yet,

one can find cases in which they are not adequate; clearly not all systems

are linear and deterministic. Further, all effects and behaviors in

complex systems are not instantaneous, and a serious attempt to explain

behavior of a complex dynamical system, and eventually to control it,

must sometimes consider delays or retarded effects.

To solve such problems, we must be able to solve equations or systems

of equations which may involve differential or partial differential

operators, linear or nonlinear, deterministic or stochastic, and possibly

involving delays.

As ambitious as it may appear, it is fortuitous that the decomposition

method appears to be capable of such solutions in a fairly wide class of

problems. The superficial resemblance of this method to s,:M'e other

methods can be misleading; the decomposition method solves problems not

solvable by other methods, or which are only solvable with much more

I
I "9
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3 difficulty or computation. The method is an "approximation" method, not

a "closed form" solution. The usual significance of these terms is that

in the one case, we have an exact answer and in the other an approximate

one. Clearly, however, a method of solution which changes the problem to

a different, easier mathematical problem and then solves it exactly is

not to be preferred to one in which the actual nonlinear and/or stochastic

model is treated with an "approximate" method which provides accurate,

rapidly convergent, and computable series of terms.

Let us consider how the decomposition method may change the situation.

Consider first a deterministic ordinary differential equation Fu = x(t)

where Fu is given as the sum of a linear term and a nonlinear term.

The linear term is Lu + Ru, where L is the highest-ordered derivative

and R is the remainder of the linear operator. If Nu is the nonlinear

term, Lu + Ru + Nu = x(t), which we write Lu = x - Ru - Nu. If this

is an initial-condition problem, then for L = dn/dtn , we define C I

as the n-fold definite integration from 0 to t.

From 1-1 Lu = LIx - L 1Ru - C-1 Nu we obtain

u = u0 -L IRu - L-INu,

where u0 = C'IX + u(O) + tu'(O) + .. + tn u (n-l)(O)/(n-l)! Now u is

decomposed into i un and Nu is written I An (U, ul ...,Un)n=O n=O

where the An are the Adomian polynomials generated fro the specific

nonlinearity to represent it exactly [23]. These polynomials have now

been discussed in numerous papers and books and are listed for convenience

0(
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at the end of this section*. Now, if Nu = f(u) is an analytic function,

we can write f(u) = I A in a series which generally converges quite
n=O n

rapidly . Now u = u0  C R un -L 1 An and we determine
n=O n=O

Un+ L 1Ru - L 1A for n > 0 to find all components of u, provided

we have the appropriate integrability. The An depend on the specific

nonlinearity. Further, A0  depends only on uo; A1  depends on uO , U 1 ,

etc. This makes the solution calculable.

If boundary conditions are specified instead of initial conditions,

we would allow L-1 to be n-fold indefinite integrations, then evaluate

the constants.

The existence, uniqueness, and other properties of the solution depend

on the terms in uO. In the linear case where Nu vanishes we have

u = u0 - LI Ru0 - L 1 RuI -I . u0 - LI Ru0 + (L-1 R)(L-1R)u0 -... or

u = I (_l)n(L-lR)nu O. If the given conditions are zero, u0 = Ilg and
n=O

u = I (_l)n(L'lR)nL-1g. Thus Fu = g becomes u = F-lg where the
n=O

inverse is F' = I (_l)n(Ll1R)nLCl. This is, of course, a succinct
n=O

introduction; general cases are discussed elsewhere [1-3].

We have listed A for n = 0,l,2,...,l0. References [1,2,3,23]
show derivations. n

The I An is a rearranged generalized Taylor series. See Nonlinear
Stochastic Systems Theory and Applications to Physics, G. Adomian, Reidel

publishing Co., 1988.

L 0
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ExampZe: As a simple (linear deterministic) example, consider the

well-known Airy's Equation y" - ty = 0 which arise in applications in

mathematical physics and are useful for asymptotic representations of various

special functions. Assume conditions y(O) = 1 and y'(0) = 1 and write

the equation in the form Ly - Ry = 0 with L = d2/dt2, R = t,

Lf= ( J .]dt)dt. Then operating with L-l we obtain

y(t) = y(O) + ty'(0) + L- Ry. Thus

=0 1 + t

t1 -1 t 3  t 4  l= t 2-t (4

Yl L-Ryo - t(l + t) 23 +  +

y2= 7l- t 6  + t7  -14.6t
6  2.5.t 7

1.4.7... 3 n-2) t3n + 2.5,8... (3n-l)t 3n+lIn (3n). (3n+l)*

The sum I Yn is the solution y. For t = 0.1, one term is sufficient
n=0

for six decimal accuracy. For t = 1.0, three terms are sufficient to at

least three digits.

Example: Consider the equation d2u/dx 2 - kxPu = g with u(0) = u(-l) =0.

Using the decomposition method [1], let L = d2  2and Lu g + kxPu.

Operating with L I, we have L'1Lu = L-It + L-1kxu. Then

u = cl + c2x + gx2/2 + L-IkxPu (2)

Let u - u with u + gx2/2. Then U kxu m  with

(L-IkxP 1uox=)m l 00 L _Ikx P)mc x +

m > 0. Thus u ( kxP)mu or u = Y (V lkxp + I + 

Mao mOm=O m=O

l
t v- *v
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I (L-lIkxP)mgx2/12, and finally u = c lO1(x) + c202(x) + r(x) where

Ox)= I mm+2m/m + 2m - M p+2m
m=0

= kmxmp+2m+l /(mp + 2m)(mp + 2m - 1) (3)
m=0

r(x) I (l/2)gkmxmp+2m+2 /(mp + 2m + 1)(mp + 2m + 2)I m=O

Since u(1) = u(-l) = 0 we have cIO I(') + c21>2(l) + r(l) =0 and

CIO1(')+ c2 02 (-l) + r(-l) o or

or oc=1r or C = -r with

cl1(1)r(1l) -

C2 = ([2 l,(-1 ) - *(lr1)[ 1 l~(1

and the complete solution can now be determined.

Suppose in the above example, we let k = 40, p =1, g =2. Thus

we consider the equation

d2u/dx2 -40xu =2



with u(-l) = u(l) = 0. This is the one-dimensional case of the elliptic

equation A2u = f(x,yz) + k(x,yz)u arising in problems of physics and

engineering.

Here let L = d2/dx2 and we have Lx = 2 + 40xu.

This is a relatively stiff case because of the large coefficient of u,

and the nonzero forcing function yields an additional Airy-like function.

Operating with -l yields

u = A + Bx + L' (2) + L- (4Oxu).

Let

u0 = A + Bx + C 1 ( 2 ) = A + Bx + x2

and let u = 1 un with the components to be determined so that the sum is u.
n=O

We identify un+l = L-I(4Oxu n). Then all components can be determined, e.g.,

U1 = (20/3)Ax
3 + (10/3)Bx4 + 2x

5

and

u2 = (80/9)Ax6 + (200/63)Bx7 + (lO/7)x 8,

n-l
etc. An n-term approximant n = J ui with n = 12 for values of x is

i=O

given in the table below.

n-term approximant *n for n = 12

x @12

0.2 -0.135649

0.4 -0.113969

0.6 -0.083321
0.8 -0.050944

1.0 0
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These easily-obtained results for a 12 term approximation are exact

to seven digit accuracy.

The solution is found just as easily for nonlinear versions without

linearization-by simply using the A polynomials for the nonlinear terms.

n

N

~!



13 9

APPROXIMATION OF NONLINEARITIES USING An POLYNOMIALS

Using the An polynomials, there is no need for mathematically inadequate

and physically unrealistic approximations or linearizations. Thus, if the

modeling retains the inherent nonlinearities, we may expect solutions con-

forming much more closely to actual behavior.

Consider simple nonlinear operators not involving differentials, i.e.,

of the form Ny = f(y).

For polynomial nonlinearities the An being sums of various products

of the yi up to i = n can be written in symmetrized form. Thus, if we

have Ny = y 2 = n 0 A, A = y2 , A 2 + 2y , etc.; but
=O 0 A2 = y  oY2

we can write this as A0 = YoYo, A1 = Yoyl + Ylyo' A2 = Yoy 2 + ylYl + Y2yo '

etc., i.e., the first subscript goes from 0 to n, and the second is

chosen such that the sum of subscripts is n.

In extending to any analytic function f(y) we define hn (y) = dnf/dyn

and write a convenient heuristic rule which users may find more convenient

than mathematical derivations -

n
A n I c(v,n)h (YO )

For example,

A3 = c(1,3)h I + c(2,3)h2 + c(3,3)h3

The c(v,n) can be obtained by simply asking how ma-y combinations of V

integers add to n. Thus c(v,n) will mean the sum (from I to v) of the

products of v of the yi terms whose subscripts add to n. To get c(2,3),

we see two integers can add to 3 only if one integer is 1 and the other is

2 (if zero is excluded). Hence, we write c(2,3) = yly 2 . To get c(l,3),
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the coefficient of hl(Yo), we have one Yi and its subscript must be 3,
hence c(1,3) = Y3 " What about c(3,3), the coefficient of h3(Yo)? Now we

h

need 3 factors yi with subscripts sunmming to 3, hence each subscript must

be 1 and c(3,3) = ylYly 1 - yI. This is not quite right, and we add another

heuristic rule. If we have repetitions of subscripts we divide by the

factorial of the number of repetitions. Then, c(3,3) = (1/3)y. We now have

A3 = hl(yo)y3 + h2(Yo)ylY 2 + h33

To write A6, for example, we need the coefficients for the terms hv(yo) for

v from 1 to 6. The coefficient of h6 must involve six integers adding to

6 or y hence the coefficient of h6(yO) is (1/6)y. What about the

coefficient for h2(yO) in A6 or v = 2, n = 6? Clearly we need two integers

that sum to 6. These are (1,5), (2,4), and (3,3). Thus, the coefficient c(2,6)

2 n
is (l/2')y3 + y2y4 + yly5  The terms involve 11 Il Yk with ki  n,

S" 1 i i=1
and if we have j repeated subscripts, we divide by j!:

A0 = ho(yo)

A1 = hl(Yo)yl

A2 = hl(yo)y2 + h2(Yo)(I/2I)yl

A3 = hl(Yo)y3 + h2(Yo)yly 2 + h3(Yo)(1/3!)y 3

A4 = hl(yo)y4 + h2(Yo)[(l/2!)Y2 + YlY3 ]

+ 12)2 + h)4
h3(Yo)(I/28y y2  h4(YO)(I/4)y 1

A5 * h1(Yo)y5 + h2(yo)[y2y3 + yly 4]

+ h3(Yo)[Y(lI/21)y2 + (/2,)yy 3]

4 h4(yo)(1/3)yy2 + hS(yo)(/5!)yl
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A 6 h (O + h 2(Y0)[(1/2!)y~ 2 y+

+ h(y)[(/3y~ yy~ 3 + (124 yl4 ]

+ h (Y0)[(1/28y3(/2y 2 134 3

3+ + (1)y2y3 + (11 4 4

+ h4(Y 0) [(1/3)4,(1I!)y 2 + (1/3! yly 3]

+ h5(Y 0) (1/4!)YJY 2 + h6Y)16)

A 7 h (YO2 + h2yY)y 3y4 + yy2y5 + VI/ljyy]

+h 3(y0)[y(1/2)y Y(/2)y 2 2

+~~~Y h4y)(/8~+y(f8~ 3 + (1/2y+(112)y I5

+ OY(1/2yyy + (1)y y +(/!)J4

+ h 5(y0)[1/3!)y 3(112!)y 2 + (1/4!)y~ + 1/84 4

+ *12 + O(1/!)y 

4 ++A+yy l7

+ h 3(Y y (16 )y 2 +(12)22

3 2Y + YY3Y4+ yy~y5+ (12!)yly0



16

A 9  h, h(y0)y9 + h 2(y0[y 4y5 + YAy + y2Y7 + Yyd8

+ h .O[13!) 2 + 2
h3y)(13) 3 + 2y3y4 + (112!)y A+ yl(1/2.)y 4

+ yly 3y5 + yly 2y6 + (1/2!)4Y7]

h 4(Y)(1/3!)y 3  12 12!)y 2 + yl1 2

2 2.3
+ (112!)y4y3Y4 + (1/2!)yly2y5 + (1/3!)y ly6]

+ h 5(Y0)[y1(1/4.)y 4 + (112!)y 2(112!)y 2

+(1/3!)y I(112!)y 3 + (l/3!)yly 2y4 + (1/4!)y y5]

+ h 6(Y0)[(1/3)y 1(1/3!)y2 + (1/4!8yly 2y3 + (1/5!)y1Y4]

+ h 7(Y0)E(1/5!)y5( 112!)y 2 + (1/6!)y 6 3

+ h8(y0)(1/7!)y7y + h9(y0)(1/9!)y9

A 10  hly=l + h 2(Y0)((1/2!)y~ 2 l 9

+ h1(y0)y~5 + yY0~ 6 + y 3yYy + (/) y 8 +YI

+ h3(Y 0)[(1/2!)~:) y +1!) (112!)yy 2

+ y~y ~ 3Y4 + y1 1 2.)+ yy5 + AI~~pI.Y

+ 12)yyy h12yyy (112!)4y2
+~Oyy + ylS6+yy~7+l8

+h 4(Y0)[(1/5.y2 2)y 2 + (113!)yy 3  + (/:yly(1/!)y 

+1/+)y(12!)y2 + (12!)y 2112)y

V.------------- 4
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+ (113:)y~y 3 (114!)y4y6

+ h (y0 ((/2!)y 2(1/4!)y4 + (1/3!)y3(1/28)y 2

+ (l/4:)yl(l/2!8y + (l/4!)yly 2y4 + (1/5!)yly5)

+ h 7(Y0)[(1/4!8YI(l/3!)y~ 2 +(15,yly 2y3 + 16YY4

+ h8(Y0)[(1/6:)y6(1/2! )y2 + (1/7!)y 7 3

+ hg(yo)(1/8)YIY 2 + h1o(yo)(I/lO!)ylO

Recent work has established that I An  forms a generalized Taylor series
n=O

about the function uo(x).

Computational Time: In numerical solutions of physical problems, it is

common to make computations at discrete space or time intervals. Computer l

methods are based on changing continuous problems to discrete problems.

Thus, in solving a differential equation, one must solve the equation at

each point of time.

Since these points must be close together to approximate the total solu-

tion, massive computations are needed and the resulting numerical printouts

yield little insight into dependences. Another drawback of these methods is

the fact that they involve linearized approximations in each interval. As the

mesh is made finer to increase accuracy the number of computations can become

enormous.

For example, solving even the simple linear equation

d2y/dt2 + dy/dt + y =0

•Iy

' * *'~.
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with y(O) = 1 and y'(0) = 0 requires a thousand solutions of the

above equation or 8,000 actual computations to get the value of y

every .01 seconds for 10 seconds. For one minute this means 6,000 solu-

tions or 48,000 actual computations. Note that if one considers an equation

in two independent variables x,t we require small steps in both variables.

Then, the computations can go up by several orders of magnitude.

One can easily visualize a problem leading to a billion coupled difference

equations to solve. For a simple scalar elliptic equation, we have one

unknown at each mesh point. For more complex problems, there can be many

unknowns at each mesh point and the resulting systems of difference equations

(instead of being linear as in the previous case) may be nonlinear,

time-dependent, and very large (inclusion of stochastic coefficients, etc.,

is still another matter). To solve massive systems, iterative procedures

are used to solve simpler systems, then substitution to get "residuals"

and repetitions of the process to produce corrections and until the error

is (or i, felt to be) within tolerable limits. To get accuracy the mesh

must ome very fine and computations required finally exceed any

conceivable computer capability for complicated equations in x,y,z,t.

Solution by the decomposition method, on the other hand, is

continuous, analytical, and requires no discretization; it corresponds

to the results obtained by an infinite number of computations by

discretization - no linearization is involved, and the solution is

accurate. If variable coefficients, several independent variables,

and nonlinearities are involved, the decomposition method is clearly

preferable. In the case of stochastic equations, the decomposition

method is particularly appropriate; it reqdires no perturbative or

truncation methods or apriori assumptions of special behavior. Computer
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results, on the other hand, are not correct when stochastic processes

are discretized.

Supercomputers are developing rapidly because of urgent need in

meteorology, fluid dynamics, fusion research, intelligent missile guidance,

and weapons design. In fluid dynamics, for example, they are considered

essential for the solution of the equations which are relevant to

turbulence, internal waves in the ocean, and future development of

hypersonic flight vehicles and engines. Supercomputers are also essential S

for VLSI devices, seismology, reservoir modeling, bioengineering, and

studies of the national economy. The decomposition method now offers the

possibility of substantial decrease in computational time over current

supercomputers.

To solve, for example, the relevant problem of a space shuttle for

eventual single-stage flight to a space station or servicing of space

structures, a three-dimensional mesh is generated which discretizes the

system of nonlinear partial differential equations into a million, a

hundred million, or perhaps a billion coupled difference equations in as

many unknowns. One begins to see then the tremendous data handling

problem, the necessity for improved algorithms and the need for still

greater computational speed. We may also have many unknowns at each point,

and, as we have pointed out, the system nonlinearities and random

fluctuations need to be taken into consideration. Since usually solutions

are iterative - first solving an approximation to the original system of

differential equations and then improving the solution by repeated

substitution of each new solution - parallel processing is complicated by

the difficulty of partitioning the work so each processor can work

independently. This is being pursued by many ingenious ideas necessitated

by the method of discretization.
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In all such problems we need to be able to solve coupled systems

of nonlinear (and generally stochastic as well) partial differential

equations with complex boundary conditions and possible delayed effects.*

These systems are Zinearrzed and discretied (and the stochastic aspects

either ignored or improperly dealt with) so the various numerical

approximation methods can be used. This requires faster and faster super-

computers to do these computations in a reasonable time. Fifth generation

computers are being considered to operate at speeds up to 1000 megaflops

(a gigaflop) or 109 operations per second or even higher.

Unfortunately the further developments in supercomputers can quite

possibly still give wrong answers because even a single one-dimensional

nonlinear differential equation without stochasticity in coefficients,

inputs, and boundary conditions - let alone vector partial differential

equations in space and time with nonlinear and/or stochastic parameters

arising in control theory for space structures.

A supercomputer is, after all, a fast adding machine, and its computa-

tional accuracy is dependent on the sophistication of the mathematical methods

programmed into it. Typical calculations consider millions of discrete

time intervals made small enough so trajectories between them can be taken

as low-order polynomials, e.g., quadratics. If stochasticity is involved,

then Monte-Carlo methods are used, which insert randomness but not the

properly correlated randomness which is present in the physical problem.

When one studies airflow about aircraft surfaces, computations are

made at tens of millions of points, and it is felt that increasing the

Delayed effects are not discussed here but are dealt with in [2].
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volume of computation to the limit in an ultimate extrapolation, super-

computers will yield complete accuracy. Not only does this ignore
S

stochasticity, it ignores the sensitivity of nonlinear stochastic systems

to very slight changes in the model - in fact, to changes essentially

undeterminable by measurement.

lel

6

6

p

U

6I
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DECOMPOSITION TREATMENT OF NONLINEARITY

COMPARED WITH LINEARIZATION

Nonlinear equations arise in every area of application, and the correct

solution of dynamical systems modeled by nonlinear ordinary differential

equations, systems of differential equations, partial differential equations,

and systems of partial differential equations is vital to progress in many

fields.

In order to make these equations tractable, it is quite common to

linearize equations or assume "weak" nonlinearity, etc., because adequate

methods simply have not been otherwise available. The practice of

approximating a nonlinear function with a linearized version arose from the

need to make equations tractable by simple analysis, since numerical

solutions from computers can have drawbacks in that functional relationships

are difficult to see in numerical printouts and, in.many cases, computation

can be excessive, and methods of analytical solution of nonlinear equations

have been generally inadequate. It is known, of course, that the

linearized solution can deviate considerably from the actual solution of

the nonlinear problem and that linearization procedures require proof

that the solution is valid. For example, writing x" a sin x in the

form x" = ax requires a priori proof that x is sufficiently small.

Usage of linearization has become rather standardized; however, solution

of the actual nonlinear form is clearly preferable to a linear approximation.

The decomposition method has substantially improved our ability to

solve a wide class of nonlinear and/or stochastic equations. It is now

possible to obtain very accurate and verifiable solutions of nonlinear,

Lor even nonlinear stochastic equations for all of the above types even if

nonlinear, stochastic or coupled boundary conditions are involved.

~N
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Until now, linearization and perturbation have been essential procedures

and one is reluctant to give up such a- convenient analytical tool as

superposition. However even with the increases in computer speed, the

complexity of some of the problems demands new techniques to save computa-

tional time. This will be an important advantage of decomposition.

Exact linearization is possible for some nonlinear equations so that

a convenient check can be made of the decomposition solution. As an example,

2consider the nonlinear equation for *(x,t)

Ot + Ox + a + ¢ 2 = 0

with specified conditions. The transformation * = I/p(x,t) leads to

the linear equation

and conditions specified on *. This is now a linear equation which

presents no difficulty if the conditions on ib are specified. However,

the nonlinear equation can be solved directly as follows. Using decomposition

we write

Lt + Lx + all + 0 2 = 0

Let N= a02 = 1 An where
n=O

A 2

A0 0

By exact linearization we refer to the cases where it is possible to
use transformations of dependent and independent variables to transform a S
nonlinear equation into a linear equation.

- -.~ ........... IN
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A2 = 2 + 2

3 A3 = 20I72 + 2 003

Solving for Lto and for Lxm

L x = -Lt - ao - 02

Thus •

= O(xo> - L tLx- a 1  2 1 02

S= 00o0 - C1Lt - aL " C 1

Adding

, = (l/2){ (x,O) + ,(O,t) -(LLx + LxILt )

-a(Lt + C~ )+(L- 2

We define

0= (1/2){O(x,0) + *(O,t)}

substitute = n and 2 = An  to obtain
n=O n=O

On+l = -(l/2)L IL x + Lx IL tn

- (I/2)a{L-1 + L 1 ln-(l/2){LtI + LI}An

for n > 0 so that all components can be determined. The solution, of

course, will be identical. However most equations cannot be exactly

linearized by transformations, hence, the decomposition technique is much

more useful.
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In the analysis of systems it is common to suppose that everything is

linear or sufficiently close to linear so that linearized analyses will

3 be adequate. Thus in a mechanical system assumed to be linear,

displacements and accelerations are proportional to forces. Thus we write

output y(t) as proportional to input x(t) or y = kx where k is a

3 constant independent of t or x. Now suppose that the system deviates

only slightly from linearity by adding a small term which is nonlinear, e.g.,

y = kx + Ex 2 . If we now consider the input x = A cos wit + B cos w2t, we

get not only the linear term

KEA cos wit + B cos w2t]

but also

k [A2 cos 2 Wit + B2 cos 2 w 2t + 2AB cos wlt cos w2t]

The first two of these produce constant terms and second harmonic terms

as before. Also sum and difference frequencies arise from the cross

product term

2AB cos w It Cos w 2t =AB[cos(w1 + w2)t + cos(wl - w2)t]

Thus, a nonlinear system produces new effects not present in linear

systems: these effects are proportional to c (and to products of

amplitudes A2, B2, or AB). Clearly then, if c is not small, such

effects become important.

Solutions are generally carried out only under the assumption that

c is small so that perturbation theory will be applicable, i.e., when

we consider a "slightly nonlinear" or a "weakly nonlinear" system.

Since, in general, solutions of nonlinear equations are made by

linearizing the equations, it is natural to ask what the effect of

°S
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linearization is on the actual solutions. Let us consider the general

nonlinear example

Ly + Ry + Ny = x(t)

where L is the invertible linear operator, R is the remaining linear

operator, and Ny is the nonlinear term. We have

Ly = x - Ry -NY

y = + L 1 x - L 1 Ry - L 1 Ny

where LO = 0. Assume the solution is given by y y n y with

yo + C I x identified as the first component of the sum. Assume also

the decomposition of the nonlinear term Ny into j A nwhere the An
n-0 nn

are generated for the specific Ny. Then the components after yoare

U determinable in terms of yo as

Y= -L- IRY0 - C A0 (y0 )

Y= -L- Ryl - C71A1(y0,y1)

Y= -L- Ry2 - C A 2(Y0,YlY 2)

Yn =L C1 y- - LC1A n i(YO" n-

or, equivalently,

1S
y= (-L- R)yO - CA 0

Y2=(-L IR) 2 YO (-L-1 R)L 1 A 0 -1

Y3= (-L-1 R)3 yo - (-L-1 R) 2 C 1AO (-L-1 R)-1 A 1  C LA 2

-----------------------------
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Yn = (-LI R)nyo - n ('L-R)nl-V - - IA

v0 V

for n > 1. The solution is y = Yn or
n=O

y= (-'1 R)ny0n=O

n-i
I (- -1VIR) nl-v -1 A

n=l v=O

It has been shown by Adomian that An(YO,Yl,..., yn reduces to yn if

Ny = f(y) = y. Then the solution is

Y I (-L R)nyo
n=O

I I (AL-R) -L v~l
n=l v=O V

1 -1 R0-

i.e., the solution corresponds now to the equation Ly + Ry + y - x

which yields

Y = Yo - 1 Ry - t-Iywith

= -VIRy0 - L

y2 Y -V
1 Ryl -L1 YO

= (L- 1 R)2 yo - (-LVIR)L-Iyo 1 yO

Y3 = "L-1 RY2 - C-yV

= (-VIR)3y0 - (-LV'R)2 Lyo - (-L-IR)L-Iy 0
1 l
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The result on the solution of replacing Ny = f(y) by y can be

determined by plotting the nonlinear and the linearized results for a specific

f(y) as we will see in the following example. Similarly replacing f(y)

by another perhaps more sophisticated linearization is seen by simply

calculating the An for the linearized function replacing f(y)..

E=Mle: Exponential nonlinearity: Let us consider a simple nonlinear

ordinary differential equation with an exponential nonlinearity

dy/dx+ ey=O0

y(O) = l

In our usual standard form (1983)* this is written

Ly + Ny = x

with L = d/dx and Ny = ey . We solve for Ly, i.e., Ly = -Ny hen

write L-1 Ly = -L-INy with C-I defined as the integration over x.

The left side is y - y(O) hence

y = y(O) - nINy

The nonlinear term Ny = ey  is replaced by An where the An~n;O

can be written as A n(eY) to emphasize that they are generated for

this specific function. Thus,

y=y(O) - L An(eY )

Now the decomposition of the solution y into Yn leads to then=On

term-by-term identification

•See reference [1].
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y1 =-L1 A 0

Y 2 = L- A 1

CI Ayn+1= - n

The A n(ey) are given by

JA1 = y'e

A2 = (4 2/2 + Y2 )eYO

A 3 = (yl/6 + YlY 2 + 3)

Thus

Y = -ex

=-e
3 x 3/3! 4'

y =1+ I (_,)n e nxn/n!
n=1

N, which can also be written y =1- Inl + ex] for x ( 1.

4.-D

LZ-
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Suppose we approximate the ey  term by 1 + y, dropping all terms

of the series for ey  except the constant and the linear term. The

differential equation becomes

dy/dx = -(I + y)

Then

y y(o) - -lI + y)

*'L- [1 -CI y:= 1 - L1 l] - V1  Yn

n=O

so that

Y0 =1 x

Yl = L- (l - x)

Yn C 1"L-l- (n >__l

Since y is the sum of the components, we have

y = I {(-l)nxn/n: + (-1)n+lxn+l/(n+l)9}
n=0

y = e'x + (e - x - l) = 2e -l

We will identify this linearized solution as y and compare with the

solution y of the nonlinear equation. The results are given in the

table

, A1
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A COMPARISON OF ACTUAL AND LINEARIZED SOLUTIONS
(EXPONENTIAL NONLINEARITY)Actua Soltiony~x)Linearized Solution

xActual Solution y(x) y(x)

0 1.0000 1.0000

.1 .7595 .8097

.2 .5658 .6375

.3 .4036 .4816

.4 .2641 .3406

.5 .1417 .2131

Exaple (Anharmonic oscillator): As an example of a vibration problem,

2 2 2
consider now the well-known anharmonic oscillator equation d e/dt + k sin 8 = 0

for e(0) = y constant and e'(O) = 0. Using the decomposition method,

the solution is found to be

e(t) = y - [(kt)2/2!l]sin y + [(kt) 4/4!]sin y cos y

- [(kt)6/6](sin y cos 2 y - 3 sin 3 y] +

which becomes

0(t) = y1 - (k2t2/2!) + (kt)4/4! .

in the linearized case, i.e., for "small amplitude" motion which offers

interesting comparison in order to determine when the smallness assumption

is inappropriate because of large amplitude vibrations.
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Exaple: Hyperbolic sine nonlinearity: Consider the equation

du/dt = k sinh u/cs

where u(@) = c > 0 for t > 0.

If we assume that we can approximate sinh u/ct= u/ct, 00we have

du/dt - ku/ct = 0. Now solving by decomposition with u = u,, ns
ii0

L =d/dt, and L-1  as the definite integral from 0 to t

Lu -ku/ct=0

L Lu = L(k/t)u

u U(0) +LC (k/c)u= I
n=0

=, (k/ct)ct = ckt/ct

= c(kt/t) 2/12!

u3= c(kt/ct) /3!

urn = c(kt/ct)m/m!

i.e., u cet/t

V To solve the original equation with sinh u/ct

11-Vn C n

where the An are generated for Nu =sinh U/ct. These are given by:
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A0 = sinh(u0 /a)

A1 = (ul/a) cosh(uo/)

A~2 2
A2 = (u2/a) cosh(u0/a) + (1/2.)(ui/a

2) sinh(uo/a)

A3 = (u3/a) cosh(u0 /a) + (u1/a)(u 2/a) sinh(uo/)

+ (1/3')(u3/a 3 ) cosh(uo/a)
i0

A4 = (u4/a) cosh(uo/a) + [(1/2!)(u2/a
2)

+ (ul/c)(u 2/a)] sinh(u0 /a)

+ (]/2!)(u /1 )(u2/ ) cosh(uo/a)

+ (1/4!)(u4a4 ) sinh(uo/a)

A5 = (u5/a) cosh(u0/a) + [(u2/ct)(u 3/c/)

+ (u1/0)(u4/a)] sinh(u0 /a)

+ INu /a)(1/2!)(u 2/a 2

+ (1/2!)(u2/a 2)(u3/c/)] cosh(uo/a)

+ (1/3!)(u / 3)u2/ ) sinh(uo/a)

+ (1/5!)(ul/a 5 ) cosh(u0 /a)

A6 = (u6a) cosh(uo/cc) + [(1/2!)(u2/a 2) + (u2/a)u4 /a)

+ (u1/a)(u 5/ot)] sinh(u0 /a)

+ F(1/3)(u /ct3) + (ul/c)(u 2/c)(u3/a)



34

+ (1/2!)(u/ 2 )(u4/ )] cosh(uo/ct)

+ 2

+ (1/3!)(u3/Ot3 )(u3 /a)] sinh(uo/a)

+ (1/4!)(u4/a 4)(u2/c/) cosh(uo/a)

+ (1/6!)(ui/a 6 ) sinh(u0 /a)

S

Now

Uo=C
u0 C

u1 = kL-IA0 = kL-1[sinh uo/a] = kt sinh c/a

u2 kL-1AI = kL-l[(ul/a) cosh(u0 /a)]

= kL-l[(kt/) sinh(c/) cosh(c/a)]

= (k2t2/2!a) sinh(c/) cosh(c/a)

-1~ -1 22.
u3 = kL-IA 2 - kL- (u2/) cosh(uo/a) + (1/2)(u,/a 2 ) sinh(uo/)]

= kL'1 [(k2t2/2)(1/a)2 sinh(c/) cosh 2(c/a) S

+ (1/2)(k 2t2 )(1/a)2 sinh
3 (c/)]

= (k3t3/3!)(1/a)2 sinh(c/a)[sinh (c/i) + cosh (c/a)]

u 4 = (0 t 4/4!)(1/a) 3[sinh(c/a) cosh(c/cx)li5 sinh 2(c/at) + cosh 2(c/a)]
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thus, the correct solution is the sum of the un above while the linearized

solution is

u = c[l + kt/a + (kt/ac) 2/2! + (kt/a) 3/3: +

If we assume a = c = k = 1, we have the results u = et in the linear

case which can be compared with the nonlinear solution.

ERROR IN LINEARIZED SOLUTION
(FOR A HYPERBOLIC SINE NONLINEARITY)

t Linearized Solution Nonlinear Solution % Error

0 1 1 0

.1 1.105170918 1.127402502 1.97%

.2 1.221402758 1.278624737 4.48%

.3 1.349858808 1.462380247 7.69%

.4 1.491824698 1.693614375 11.92%

.5 1.648721271 2.001468676 17.62%

.6 1.8221188 2.456234584 25.82%

.7 2.013752707 3.325545159 39.45%

.75 2.117000017 4.512775469 53.09%

.76 2.13827622 5.121285511 58.25%

.77 2.159766254 6.939848656 68.88%

.7719 2.163873711 10.9022661 80.15%

.771936 2.163951611 14.69149181 85.27%

.77193683 2.163953407 20.34929139 89.37%

.7719368329 2.163953414 28.3241683 92.36%

.7719368330 2.163953414 0 100. %

So we see that the error due to linearization approaches 100% in this

simple example. Linearization of nonlinearities in modelling of rapidly

maneuvering space structures could conceivably result in similar inaccuracies

and should be avoided.
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Series Solution Convergence Compared with Numerical integration: The

decomposition method converges very rapidly in most cases: * ng the n-term

approximation, is accurate for quite low values of n. To emphasize this

M point we now consider only a two-tern approximation in the following example

with the added comment that additional terms are extremely easy to obtain.

Consider the equation dy/dt =t + y . We now have L =d/dt,

Ny = y , x(t) -t. Assume y(0) =k is an integer. Then

L Ly = L - x - C INy

y y y(O)LtL1  CIAn

where the A n = A (y%

y =y(O) + L- A n
Let

YO = k +t 2/2

and since A 0  YO y A A1 = -yO Y1, A 2 =-y 0y2 + Y i--

j ft y 0 dt = ft(k + t2 /2)1ldt

0 0

y= (2/k) 112 tan kt/(2k) 
1/2

Let us consider a two-term approximation 2 =YO + yl. (The complete

solution, of course, is I Yn. Then
n= 0

=k + t 2/2 + (2/k) 1/2tanklt/(2k) 112)
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The following table compares this approximation with results of a numerical

integration using k = 4. With only a little more effort we could go to a

higher n in 0n for a better approximation, which is necessary since the 0

percentage error is already extremely small. The worst case is less than

0.4%. However, if we go to *3 we find the worst case has an error less

than 0.02% - this for only a three term approximation! Thus, we have very -i

rapid convergence.

COMPARISON OF DECOMPOSITION AND NUMERICAL INTEGRATION

Decomposition Numerical
method integration

t 1 y A =2 - y % Error

0 4.0 4.0 0 0

0.5 4.25 4.25 0 0

1.0 4.74 4.73 0.01 0.21

1.5 5.47 5.46 0.01 0.18

2.0 6.44 6.42 0.02 0.31

2.5 7.64 7.61 0.03 0.39

3.0 9.08 9.05 0.03 0.33

4.0 12.68 12.64 0.04 0.32

5.0 17.25 17.21 0.04 0.23

10.0 54.92 54.88 0.04 0.07

20.0 205.01 204.97 0.04 0.02

o,0

el

4a\a'. ".N%~
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HEAT AND DIFFUSION

Typical problems of this type are initial-boundary value problems over

a specified region and with a given initial temperature. Let's look at

some common equations involving nonlinear terms which may arise in a

particular situation - all of which are easily dealt with.

Burger's equation ut + uux = uxx represents a balance between

diffusion and convection. If the u term vanishes, we have a simple

diffusion equation - a scalar hyperbolic equation ut = Uxx Some specific

conditions must be specified for completeness, e.g.,

u(x,O) = f(x) for -- < x <

u(O,t) = 0

and

U x (O,t) = h(t)

Another possibility is

ut + uux + Xu = auxx

or the inhomogeneous Burger's equation

ut + uux = aUxx + f(x,t)

for 0 x < and 0 t < T with u(O,t) =u(L,t)= 0 and u(x,O) =a(x)

where a(O) = a(L) = 0 and a > O.

Fisher's equation ut = Uxx + u(l - u) shows still another nonlinearity

u(1-).

For a general nonlinear form, we can consider

(a/ax)[k(u)au/ax] = cpau/at

, 1~V~'~:-, ~~*.~*
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with cp a constant and k(u) a specified function. If k = 1, this

becomes the simple heat equation u = ut. When temperature variations

increase, one must consider k dependent on temperature u, that is,

k = k(u) so that the equation becomes nonlinear. Suppose, for example,

k = k0 + kIu, etc. Finally, we can have equations such as

ut = xx + af(u,ux)/at or ut = + f(x,t), etc. All of the foregoing

are easily dealt with by decomposition with the An polynomials generated

for the particular nonlinear terms.

SOME SPECIAL CASES DEPENDENT ON STRUCTURE AND MATERIALS

1) One-dimeneionaZ heat equation: Consider a single space dimension with a

specified temperature distribution u(x,t) described by

(a/ax)(k au/ax) + F(x,t) = cp(au/at)

where F represents a heat source at x at time t. In the mathematically

simplest case where k, c, p are assumed to be constants, we can write

this in the form

ut = a
2uxx + f(x,t)

where a2 = k/cp and f(x,t) = (l/cp)F(x,t) or if the source vanishes,

simply

2u t  a 2U xx

often referred to as the heat conduction equation. We can consider, for

example, a homogeneous rod of length t, thermally insulated on lateral

surfaces and sufficiently thin so that at any time t, the temperature

u(x,t) is the same at all points of the cross-section at x.

I-
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If the rod is inhomogeneous so that k = k(x) and heat exchange takes

place with the surrounding medium, the situation is described by an equation

of the form

Ut - a2 Uxx + au =f(Xt)

with a = h/cp, h a heat-exchange coefficient, and f(x,t)

aT(x,t) + g(xt)/cp with T the temperature of the medium and g(x,t)

the density of the heat sources.
S

2) Three-dimensional heat equation: In the case of three space dimensions

and time, the heat flow is described by u(x,y,z,t) and the equation

cput = div(k grad u) + F

where k, c, p are functions of x, y, z. More generally we may have k

dependent on u and space coordinates, e.g., in the case of large

temperature fluctuation. This is the more physically realistic case which

we can apply to real trusses and completely amenable to solution by the

decomposition method.

If the material is homogeneous, we can write

ut =a 2(U xx +uyy +u + F/cp

22

where a2 = k/cp, or,

ut = a2V2u + f f = F/cp.

The diffusion equation is analogous to the heat conduction equation.

For one space dimension and time, we can write
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3/ax(D au/ax) = c(;u/at)

or (Du x)x = cut. If the diffusion coefficient D is constant, we have

ut = a2uxx

in the same form as before with a2 = D/c.

3) Boundary conditions for Heat problems: Differential equations do not

completely specify solution uniquely. We must also prescribe conditions

on the solution. Thus to complete the specification of the problem, we

require the auxiliary initial and/or boundary conditions as well. Thus in

the heat equation, we can prescribe the temperature at the ends x = 0

and x = Z. We can specify u(O,t) = g(t) where g(t) is known in the

time interval of interest. Or, we can specify the heat flow at one end,

e.g., Du(O,t)/Dx = h(t). Or, we can have more complicated conditions such

as

au(t,t)/3x + Xu(t,t) = T(t)

These restrictions apply to all partial differential equations. Such

equations have many solutions. In order to identify a particular solution

from the entire possible set of solutions, we need supplementary conditions

similar to specification of initial conditions in an initial-value problem

described by an ordinary differential equation.

The usual situation is that we will have some boundary conditions

specified on the boundaries of the space described by the coordinates

x1, x2, x3 or x, y, z for which the partial differential equation is
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applicable and, also, initial conditions at a particular instant t = 0 or

t = t0.

If we know the temperature distribution at t = 0 and the temperature

at the boundaries, the temperature distribution will be precisely determined

for t > 0. If the time interval of interest is very long, the influence

of the initial condition vanishes and the distribution will be determined by

the boundary conditions. For 0 < x < k, we might specify u(O,t) = f(t)

and u(t,t) = g(t). For 0 < x < -, we need only u(O,t) = f(t).

If the region is unbounded, then a bounded solution is uniquely m

determined by the initial conditions alone, i.e., by u(O,u1 ,x2,x3). Thus

for the bounded case we might have conditions such as u at t = 0 and

u at x = 0 and x = a.

However, if for very large a, we retain the conditions at t = 0 and

x = 0, but now u(a) approaches zero as a becomes very large.

Use of the given conditions is simple. Thus in a second-order

differential equation with no forcing term, i.e., one involving d2u/dx 2,

00

our u term in the decomposition u I u is given by uo = Yl + y2x"

If the temperature u is given at the ends x = 0 and x = a of the bar,

we can evaluate Yl and Y2 in terms of the given temperatures.

6

6

I V. %- I"
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4) Solution of a Two-dimensional heat-fZow equation: Consider the parabolic

equation uxx Uyy ku t where k = k(x,y). Write this as

Lxxu + L yyu = k(x,y)Ltu

We write three equations

Lyyu = kLtu - L uxx t yy

L yyu = kL tu - x .

Ltu = k-[Lx + Ly]u

Operate on the first with the second L and the third with Lt

to get
= LtxxyyUl)u =u(o,y,t) + -ylX+ LxxkLtu - -I !xy

u = u(x,O,t) + y2y + L kLtu - LyyL u

yy t yy xx

u = u(x,y,O) + L Ik l[L + LyyU

Adding and dividing by three

u = (1/3){u(O,y,t) + u(x,O,t) + u(x,y,O)}

+ (I/3){ylx + y2y}

+ (1/3){[L-1  1 k
-[ xx yy t

L- 1 L + L 1L ]u}
xx yy yy xx

+ L 1 k[L + L Jul
t XX yy .
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Now u is replaced by I u n with u0  identified as
n-0

u0 = (1/3){u(O,y,t) + u(x,O,t) s

+ u(x,y,O) + ylx + y2y}

The boundary conditions at x = a and y = b determine Yl' Y2. These

vanish if a and b recede to infinity. Each un after u0  is now

determined by:

u =(1/3){[L -1 + V1JIkL un xx yy t n-i

+Lk- L +L ]u

-[xx yy + yy xx]Un-i

tk xx yy n-i

Lxx involves two differentiations with respect to x. Lyy involves two

differentiations with respect to y. Lt involves a single differentiation

with respect to t. The inverses are the corresponding integrations.

Thus, all the components of u = u n are determinable and again wen=On

see that the decomposition method solves such equations.

5) Solution of a two-dimensional heat-flow equation with a heat source g:

We will consider a bounded rectangular plat . with temperature specified on

the edges and at an initial time t = 0. The equation to be considered is

u + u - k(x,y)ut = gUyy ) t

or equivalently

a2u/ x2 + a2u/y2- k(x,y) au/at g

WL% 8, % " ' " , .K, ,' ,"."," •,, " ,",, " ..-. -:. - ,,";.•..- ',,, ' .',,- ." '-,.''..'"".,-.,-...'-" .". .", " , .- ,_.•- . -',-',S
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for 0 < t < = and x,y c Q, a bounded rectangular plate with boundary

r with temperature distribution specified on the edge x c [0,a], and

on y e [0,b], k = k(x,y), given u(x,y,0)1, = 0 and u(x,y,t) f(xy,t)

for x,y c r.

b

x
0 a

S

Suppose now we let the conductivity k be constant and the temperature

T be constant on the given surfaces. Then

u0 = T - (Tx/a + Ty/b)/3

If a,b -, then u0 = T, i.e., u0  approaches T for large a,b

1 /[ xx +yy]U0 xx yy yy xx 0

+ 1/3 L 1k1L + L U- ( " 2 I

t xx yy T/)x+

We know uO , the first component of u I un and we have now found u1

n=0
in terms of u0. All other components are found in the same way. If

we replace u, by un+l and u0  by un  and let n = 0, we have the

above formula. If we let n = 1, we have u2  in terms of uI. Then

let n = 2,3,... to get others.

S

,',w" :, , ,. - .' .". .m *.
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6) Three-dimensional general case: Let us consider the general form

where k may be a constant, space or time dependent, or a function of u.

In the last case, we have a nonlinear equation. ;The nonlinear terms must

be replaced by the sum of the appropriate An  as specified by the

decomposition method

3
i (a/axi)(k au/ax i) - cpau/at = g

i=l 1

where k is the coefficient of thermal conductivity, p is the density,

and c is the specific heat at xl, x2, x3. We will use x, y, z to

avoid confusion with the subscripts for the decomposition. Let Lx  a/ X,

Ly = a/ay, Lz = a/az, Lt = Wi8t. Now we have

LxkLuxu + Ly kLy u + LzkLzu - cpLtU = g

Solving for each term in turn,
1

LxkLU = g + cpL yu - L yky u - L zkLz u

Ly kLy u = g + cPLtu - LxkLxu - L zkz u

L zkLUzu = g + cpLtu - LxkLuxu - L ykLy u

cpLtu = -g + LxkLUxu + LykLyU + LzkLzu

7

The first equation becomes

kLU= u(O,yz,t) + Lg + CLcpLtu __

x L - k

A- A-Lkyu--
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L xu = kI ku(O,Y.z,t) + L-1 g]
x

+ k1V L-cpL u-k1-1 Lk

k1lL- 1 L kL u

u =u(O,y,z,t) + Lx I{k- u(O,Y,z,t) + L y g1

+ L-1 k'lL cpLtu - L k1lL-1 L kL u

- L-1k- Y 1 L UL u
x x z

We proceed similarly with the other three equations. Then

kLu U(x,O,z,t) +L g + L y cpLt u x~x ~k

Y y y tyxxx

U = k(,gzt + £u-[(x,O,z,t) + ]+kVcL - k1

y y

+- k1 VL kcL u -CklL1Lk

yy ty

The third equation becomes

kL u = u(xty,O),t) + CL1 g + L-IcpLtu

- 1 1 -

L kl u(x,y,O,t) + k- 1~ 1 1'~cpt

- kIL1 lL kL u -k1VL ki uz x xz yy
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u =u(x,yO,t) + C Ik- U(x,y,O,t) + CLIk- 1 1
z z

+ CLI k1L IcpL u -C1k-ICILL
z z tU - L z N x x

- C lk 1 L kL u

The fourth equation is

L tu = -g/cp + (1/cp)(L kLU u) + (1/cp)(L kL U U)

+ 1/cp(Lz Ui z U)

u = u(xy,zO) - L tI(g/cp) + L t (1/cp)L xKLx u

+ Lt I(1/cp)(L ykL yu)

Adding and dividing by four we get u:

u(O,yz,t) + C I {k-1 [u(O,y,z,t) + C 1 g]}

+ CL1 k-1 L cpLtu - C 1k- L ULu

y y

+ C 1 k- I C L VkkV 1 ku

+ u(x,O,t) + CL1k 1 u(x,,O,zt) + L 1kg

+ L2y k L ycpL - L L Uxu

Z zy z

C k- I C I kL u. M'* %%
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+ u(xy,z,O) - L I(g/cp) + L I(l/cP)LxkLxu 

+ Ltl (I/cp)(LykLyu)
Oy

Replacing u by I u or u + U + 0.., and defining u0  to
n= O

include all the auxiliary condition terms and terms involving g, we have

u0  (I/4)(u(O,y,z,t) + u(x,O,z,t) + u(x,y,O,t)

+ u(x,y,z,O) + LIk-lu(O,y,z,t)
x

+ CI klu(x,O,z,t) + Llk-1 u(x,y,O,t)y z

- mt1 (9/cp) + C 1k1Izg + LI k'IC gt (gcp L zV y y

+ L-1 k-I1 g)x x

Now all remaining terms ul, u2, ... , can be found from preceding terms by:

= (14{-Ik p k- I 1 Ck1yUn = (l/4) {Lxlk'ILxlcpLt L LxlV~k
n x x t x x y

Lxk-ILIL kLz + y1k- I  cpLy t

- k-I LxkLx + k- I

- I C Lz U x L - ,z k- 1LzL U

+ L(1/cp)LxkL + Lt1 (1/cp)ykL }Un
txt y yn

for n > 0.

sQd
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7) Three-dimenejonaZ linear caae: Of course we are by no means limited

to linear equations; the decomposition method solves highly nonlinear

equations. However we consider a case familiar to engineers for clarity S

and simplicity. Now assuming k, c, p are constants, we have the form:

a2V2u .Ut = f

Now define Lxx =a 2/ax2, Lyy a 2/ay 2 , Lzz = a2/az2 , Lt = Vat. Then

a xx L yy +L + Lzu- Ltu = f

Solving for each linear operator term in turn, we have the four equations

a2Lxxu  f +Ltu a2 LyyU a2 Lzzu

a2L 2 2 u
a Lyy + Ltu a2Lxxu  a Lzz u

a2Lz u  f + Ltu a2Lx u  a2 Lu

Ltu= + a 2Lxxu + a2 Lyyu + a2Lzz u

or

Lxxu = a-2f + a-2 Ltu - L yyU - LzzU

LyyU=a-2f + a -2Ltu - Lxxu - LzzU

Lzzu = a-2f + a-2 Ltu - Lxx u - LyyU

Ltu = -f + a2Lxxu + a2LyyU + a2LzzU

For simplicity let us allow a = 1 here. Then

Lx u f + L - LyyU - Lzzu

yy LtU LXU zLyyU f + Ltu L LxxU- LzzU -

N-.% "-
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Lzz u= f + Ltu - Lxxu - L yyU

L tu =-f L Lxx u LyyU u Lzz u

Operating with the inverse operators (two-fold integration for x, y, z

and single for t),

u(xyzt)=A+Bx+L f+[C1 L - L1 -L1Lzz u- Lxx yy

.- zU [1yy + yyt -I 1 ]u

u(x,y,z,t) = E + Fz + Lzf+ [Lzt L 1 -1 ]ux x LzzLyy
u(xy,z,t) = G - lf + [ lx + Lt1L + ,_zz u

f +It 1 XX + Lt

Again, adding these equations and dividing by four, we have u on the

left side and a complex expression on the right side. Letting u = nnO

we identify u0  as including terms involving the boundary conditions

and the forcing function f. A, B, ..., G are chosen to satisfy boundary

conditions. Now we have

u0 = (1/4){A + Bx + C + Dy + E + Fz + G

C-1 l + l -L -l fxx yy zz - t

u - xx yy L xx zz yy t- yy xx - yy zz

-+ -Al CIL + LAIx + L_ 1Ly + Ltl1Lzz}un+Lzzt - zz xx xzzyy t, 17 I Vl -1 1 L

n-i
for n > 0. The expression n = . ui is the approximation to u, i.e.,

the correct solution is the sum of all the components ui  but since the

series converges so rapidly that a few terms are sufficient for a good

, 0
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approximation, some n terms will be enough or ,n = U0 + u1 + 0.. + un-l

n-I
or I ui  will serve as an approximation to u. Easily computable and

1=0

accurate solutions have been obtained with small n for differential and

partial differential equations, even when nonlinear terms or stochastic

processes are included. Numerical computations clearly demonstrate the

convergence to desired accuracy.

8) 2wo-dimensiona homogeneous heat equation: As an illustration of

procedure, we consider the specific example

V2u - ut = 0

with given conditions u(Ot) = t, u(x,O) = x2/2, and au/xI =O =0;

we now have

u = u(o,t) + L Ltu

u = u(x,O) + L-I LxxuUt x

Adding and dividing by two, we have

u = (l/2)[u(O,t) + u(x,O)] + (1/2)[L 1Lt + LI un xx t t Lxx n=Q
CO=

where we have written u = 1 un. Now we can identify
n=O

u = (l/2)[t + (x2/2)] 0

= (1/2 )CLIL + VLIxx t t xx~~ 0.

00 y 6
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u2  (1/2)[L IL + 1-1 Ju2xx t t xx 1

(1/2)[VL +V 1  ]

Un1xx t t LX~u n>O0

This specific case with the given conditions has been chosen so that

[LlLt + LA1 L] is an identity operator, a special case making the

calculation particularly simple for the sake of clarity. Thus we see

that

ILAX~ + CIL )u(O't) + u(x,O))xx t txx

= CI u(,t+ ClL u(x,O) +~ L u(O,t) + CLt Lu(xO)

= i-li (t) + i-li (x2/2) + C 1L, (t) + VA V x/2)xxxxt t xxt xx

= (x2/2) + t = u(x,O) + u(O,t)

In the general case one has to compute the effects of these operators

repeatedly, but it is still straightforward. Now for the case being

considered

=O (1/2)[t + (x 2/2)]

U, (1/2)[LxxLt + Lt Lxx]u0 = (1/4)[t + (x /2)]

U2  (1/2)[VLt + CIL ]u =(/)t+ x22]2xx t t xx 1 (l8[ +(x/)

=n (1 /2n+l )It + (x 2/2)]

u = t + (x2/2)] (1/ 2n+l)

is the solution obtained from summing the u n from 0 to w.Denoting
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an n-term approximation by *n'

20 0.5(t + x /2) u 00

2 = 0.75(t + x2/2) = u0 + u1

3= 0.875(t + x2/2) = u0 + u +
+0.0 U ()t+22

limn = I + U+-+ n-i+x 2/2)

which shows the improving approximations to the correct solution t + x2/2

as n increases. We see the convergence of the coefficients .5, 0.75,

0.875... to 1.0 illustrating the improving approximation. Solutions

using the decomposition method are analytic but not closed form - the

closed form in this case arose from a problem chosen for the purpose of

clear illustration. Note that six terms yield the solution to better than

98% and with 10 terms, the approximation is within 99.9% of the correct

value.

Addition of stochasticity in forcing functions or coefficients results

in the series *n becoming a stochastic series from which statistics are

easily obtained by averaging.

E campZe: Heat conduction in a uniform beam: For one-dimensional flow

parallel to the x-axis, the equation is ut = kuxx where k is the

thermal diffusivity. Taking k = 1, we have ut = uxx if heat is

transferred only by conduction, and no internal source is present.

Boundary conditions describing the thermal conditions on the surface

of the solid and the initial temperature distribution are necessary along

A IRbrjl1 0CSQ@k~m&4lb
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with the heat equation to determine the temperature distribution u(x,t).

(For a three-dimensional solid with an insulated end at x = 0, the

condition on u is u x(Oy*z,t) = 0 because the heat flow across the

surface would be proportional to ux(O,y,zt).)

Suppose we have a bar whose temperature distribution is described

by u(xt). Let the bar be initially at temperature f(x) = sin x and

assume the ends x = 0 and x = i are kept at temperature zero. We

have therefore the conditions u(x,0) = sin x, and u(O,t) = u(7,t) = 0.

Writing Lxu = Ltu and applying the inverse operator x1  to both sides,

wegt xx t xx

u = A+ Bx+L U.

A and B must be zero to satisfy the given boundary conditions at the

ends so that u0  is zero in this equation. Whenever this happens, that

particular equation does not contribute to the solution. (The decomposition

method requires a non-zero uo.) Now applying L l  to Ltu = Lxxu

and satisfying the initial condition, we have

u = u(x,O) + L_ L u

so that u0 = u(x,O) = sin x. We have
UUo+Lln

u 0 t xx n
or

Ul LL xx u0 = LlL xx sin x =-t sin x

u2 = LILxxU1 = LtL xx(-t sin x) (t2/2) sin x
[ •x
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The solution is u = (I - t + t2/2 - ... ) sin x = e-t sin x which is

easily verified.

It is interesting, as a simple test, also to consider the trivial

example of steady-state temperature in a bar with ends at x = 0 and

x = 1, maintained at u = 0 and u = T respectively. Then u(O) = 0

and u(l) = T. Since we are considering steady state, we have no time

derivative and only uxx = 0 so that u = Ax + B is the complete

solution instead of just the first component uO. Applying the conditions,

i.e., the known temperatures at the ends, we have B = 0 and A = T so

that u = Tx is the well-known solution.

9) Conductivity dependent on x: Consider a rod of length Z lying

along the x axis with its left end at the origin. Suppose its density

is a function of x, its cross-section is A, its mass per unit length

is p, specific heat is c, and conductivity is kI. Let u(x,t)

represent temperature at a point x at time t and let F(x,t) be the

amount of heat per unit cross-section per unit time passing x to the

right. Then, the cylinder of base area A between the points x and

x + 6 has heat supplied to it at the rate cp6Aut = AF(x,t) - AF(x + 6,t) =

-AFx6 where higher powers of 6 are dropped since 6 is small. Since

F = -klUx in heat conduction, Fx = -klUxx. Now we have the model equation

(cp/k )ut = uxx

or letting k = cp/k l , we have the heat equation

uxx = k(x)ut

vs t ~
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where conductivity k is not a constant but is dependent on position.

Suppose we have initial boundary conditions u(x,O) = g(x) for 0 < x < 1

and u(O,t) = hI(t), u(lt) = h2 (t) for t > 0. Then

u0 = (l/2)[g(t) + hi (t) + x(h2 (t) - hi(t))]

from which the following terms can be computed analogous to the previous

procedure when k was assumed constant. However we now have

Lxxu = k(x)Ltu

or

u= A + Bx + L1k(x)Ltu, u0 = A + Bx

and

k(x)Ltu = L xx u

Ltu = k1I(x)L xxu

u = C + LIk 1 (x)L xu , u0  c
t xx

so that if neither u0 vanishes

u (1/2)[A + Bx + C] + (1/2)[LxIk(x)Lt + Ltlk-l(x)Lx ]u

u = (1/2)[A + Bx + C]

Un+ l  (1I/2)[L k(x)Lt + L Ik- (x)Lxx ]un

Now we can consider various specific examples. Our only objective here is

to demonstrate solutions of problems also solvable by other methods for

easy verification and to show the method clearly and the simplicity of

% ~ w U
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the computation involved. Let hI = h2 = 0 and g(x) = sin 7rx. Then

one equation is sufficient. If k = 1,
S

u 0 = sin rix

u = L_ 1Lxxsin wx = -w2t sin nx

u2 = LtLxx (-Tr 2t sin frx) = (n4t2/2) sin rx

u = D - (r 2t) + (r4t2/2) .... ] sin rrx

At this point we happen to be able to identify the bracketed series as e-I 2t

so we can write

u = e7 2 t sin Tx

Identification of a closed form is not necessary. We have an analytic

approximation that can be calculated numerically to see it converges to

the correct result. Thus the temperature u(x,t) can be calculated

exactly at any x and t. To consider more general cases we can allow

a given k(x), e.g., k(x) = 1 + x, and compute a series for u(x,t).

The method can now be generalized to parabolic equations such as

V u - kut = g

where k : k(x,y) or k(x,y,z) and g : g(x,y,z,t) or even stochastic

cases.

I,. % L.

' Z ".%'-0
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10) NonZinear heat equation in one-dimension:

(a/ax)[k(u)au/ax] = cp(au/t)

u(Ot) = U I

u(x,O) = u

Here, we can let k(u) be any function - a linear function k0 + k1u, or

a + Ru + yu2 , or sinh u. Suppose we consider the first. We have

L xk(u)Lx u cpLtu

or

Lx k0Lxu + LxklULxu = cpLtu

The procedure is straightforward. We have two linear terms koLxLxu 11

and cpLtu and the nonlinear term kILx(uLxu). In the nonlinear term,

we replace uLxUe uux  by I An where the An are generated for
n=O

Nu = uux . We then solve for the two linear terms in turn using the

inverse operators L-1  and L-1 . We define u as usual and assumeCOO

the decomposition u = U. The components ul , u2,... now are
n=0 n 2"

determinable.

Solving for the linear term Lxk 0Lxu and substituting a for

cp,

kLU = u(O,t) + CLA u - L kL k uL u
LXU x t Ix xl1 x

L ou k u(o,t) + k-LC Au - L L k uL u

m . -m - - l - * ... .. - . .... 0 0 x . . ..... i
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u u(0t) + CIk- u(0,t) + C - - Lu

C- -I k iuL ~uxx 0 xx xx Ix

u =u(0,t) + C1k u(0,t) + k- aC ICL L u
xx 0 0 xx xx t

- C Ik-1 L C I uL uxx 0 xx xx 1x

Now, solving for the remaining linear term

L U= -1Lxxk0 Lxx u+a1 xxi k xx

u =u(x,0) + a-1 lk0LtLxLx -k1LtLx Lx

Adding the two equations for u and dividing by two:

=o (1/2){u(0,t) + u(x,0) + Lxxko u(0,t)}

= (1/2){ 1cV -1x0xxx
u 0 ('2{oaxxLxxL tU 0 - L xxk 0LxxLV1 kIu0 LU xxUO0

+ - k - LL u + a-l L-1 LuLu
0 t xx xx 0 1i t Lxx 0 xx 0}

u 2 =(1/2){ko
1cLxLxLtul - Lxk x~x~,xu + u. LXxUi)

+ -1 0 Lt 1 iX +a- t 1Lxx (u0 xx u1+U 1L xxu 0))

so that components are determinable as necessary.

Jill. %
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11) Non-uniform Conduction or Nonlinear Boundary Conditions: Suppose the

heat conducting material is not uniform so that the coefficients in the

equation are discontinuous at one or even several points. We can then

divide the total interval [OR] at the points ci of discontinuity

into subintervals. If the temperature and the heat flow are continuous

at the points Ei, we have

u(Ci - Ot) = u(Ei + Ot)

k(e i - O)3u/3x(c i - Ot) = k(ci - O)au/ax(E i + Ot)

If heat is being radiated at the x = 0 cross section of the

conducting material with the temperature T(t), we have the nonlinear

boundary condition:

k au/ax(O,t) = o[u4 (Ot) - T4(Ot)]

Such nonlinear boundary conditions can also be handled by the decomposition

method. The procedure is simple. We use the nonlinear boundary equation

given just like a differential equation again using the approximation

en - for example, the three-term approximation *3 - as the solution of

the boundary equation which results in evaluation of the constants of

integration in ¢3 A large number of examples of this type have now

been verified for accuracy. 9.

The power and convenience of the decomposition method is shown by the

following examples for comparisons with usual procedures.

Consider the homogeneous heat conduction equation ut = a2 uxx with

u(x,O) = *(x) and u(O,t) = u(t,t) = 0.

"
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Applying the well-known "separation of variables" technique

assuming *(x) is continuous, bounded, possesses piecewise continuous

derivatives and satisfies 0(0) = 0() 0. (Then u(x,t) will be

continuous for t > 0.) Let u(x,t) = X(x)T(t). Then we have

(1/a2 )(T'/T) = (X'/X) = -X = constant

which leads to the equations

X"+ xo x(oA=X) = 0

and

2

x n = (Trn/t)2 where n 1 12,3,..

Xn(x) = sin(rnx/t)

TntM = Cne-aXnt
n n1

where the Cn are constants. Thus

=O CO -X (t 2 X t
u(xt) = = cne n sin(nn/t)xn=O n=O

satisfies the homogeneous boundary conditions. To satisfy the initial

conditions

O(x) = u(x,O) = Cn sin(Rnx/k)

n=l

which is the Fourier sine series so that the cn are Fourier coefficients

which we can evaluate

Ln = ¢n = 2/Z J(. sin( nclOde

[It can be shown that the series converges and is appropriately (term-wise

twice) differentiable with respect to x, and satisfies the differential S

S
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equation in 0 < x < L, t > 0.] We will see below that solution by

decomposition is very much simpler and that it results in a much more

easily computed result. Before we proceed with decomposition we would

like to comment that this solution can also be written as

u(x,t) = G(x,E,t),(c)d

when the Green's function G is given byOD 
2

G = (2/) I exp{-(nn/) 2a2 t} sin(nnx/k) sin(wne/k)
n=l

which can be seen by looking at u(x,t), substituting values of cn.

Since the series for cn converges uniformly for t > 0 with respect

to c, the summation and the integration can be interchanged.

2
If instead of ut = a2U'X

, we consider

ut= a2uxx + f(x,t)

i.e., a more general equation with a forcing function and assume given

conditions as:

u(x,0) = u(0,t) = u(k,t) = 0

the solution becomes

u(x,t) = if G(x,t,t-T)f(E,T)d~dT

G = (2/) 2a2(t-T) sin(Trnx/0)sin(Trnc/).-n=l1

We can, if we wish, apply decomposition to the separated equation,

but we emphasize that there is no need for the separation anymore since

9NK
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we can do the partial differential equation directly as demonstrated by

our examples so far. The decomposition result is very much simpler and

much easier to compute than the result above. If we add nonlinear or

stochastic terms as well, then the decomposition method works as easily

and yields a much superior result because no artificial simplifications

are forced on us.

12) Self-shadowing Latticework Structures in Orbit: An orbiting latticework

structure - a truss - undergoes time-dependent heating by the sun and the

earth, as well as by power systems, heat-exchangers, and electronics on

the space station. Meanwhile heat is being radiated by the truss itself.

The temperature distribution T(c,t) along a truss member is obtained

m by solving conservation-of-energy equations - ordinarily accomplished by

finite-element methods.

Since the specific equation is not significant in this discussion and

the heating history depends on the orbit, the shadowing by the rest of the

structure, etc., let us first consider a simple case with an isothermal

truss member. The truss-member has temperature T(t) which must be

found from

3T/at + kT4 = g

where k depends on density, emissivity, volume, emitted radiation

surface area, and the Stefan-Boltzmann constant and g depends on

incident radiation surface area and heating rate. The equation can be

Me- -C or W, e r "
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rewritten in our form

LtT = g - kT4

Applying the inverse operator as usual, we have

T = T(0) + Ltlg - kt 1 T4

and by decomposition

T = T(O) + Ltlg 1_

T1 = -kLt
1A {T4}

T2 = -kLt1 A {T41
2 t I

Tn 1 = -k 1 A {T 4}
n~l Ut n

CO ~n-I 0
where IoT n = T. An n-term approximation will then be given by 4n i

n=0 i 0

or T0 + lI + --- + Tn- l which we have shown how to calculate above once

we know the An. The An polynomials for the quadratic nonlinearity T4

are available from the published literature and are given by:

A= T 4

00

3a
A= 4T T

1 0 1

A =4T3 T + 6T32 2,

3 0 3 4 1T0  1TT.

See reference [1,2,23].

p o,

- ~ ~'v~ -'~~~' ~' **', ',:.:. .J\',,
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A=T + 4T3T + 6T2T2 + 12T2T T + 12T 2T T
A T3 T+4 3 T 2 2 Tl 2 2TT 2+122TT

A5  0 TT5  1 TT2  0 1T1 4  0 12T2 3 + 1 0 3 2 122 0T1

Thus the system is completely calculable.

When we have a more complex situation with multiple truss-members,

systems of coupled equations arise. These are solved with equal facility

by decomposition.

Also, since heating will not be uniform, the isothermal approximation

is obviously poor and we will have nonlinear partial differential equations

such as

MaaTt - a 2T/ax 2 + BT4 = g

where a depends on thermal conductivity, cross-sectional area, density,

specific heat, and volume and $ depends on emissivity, emitted radiation

surface area, and the Stefan-Boltzman constant. In order to solve for

T we write

LtT - L xx 8 = g

This we now solve by decomposition by first solving for the two linear

operator terms; thus we get the two equations

LtT = g + aLxxT - 6T4  (1)

4tLxxT = -g + LtT + aT (2)

From equation (1) if a, a are constant

T = T(O) + L1g+ aL L T - a1IT- (3)

"Self-Shadowing Effects on Thermal Structural Response of Orbiting
Stre-ses," j. Mahoney and E. Thornton, J. Spacecraft, 24, no. 4, pp. 342-348.
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From equation (2)

T= A + BX- a-l xxg- + -1 LtT + -1$L1T4 (4)

With the decomposition of T into components to be found, i.e.,

T = ) Tn  and representing the nonlinear term T using the Ann=O 0

polynomials for T4, i.e., T4 = 0 An{T 4} we have
n=O

A0 0

A1  0 4 0 1

2 04TT2  22

A3 = 4T 3T + 4T3 T 2
3 03 + 1 200T1T2

A =T4 + 13 T T2 T2 +l2T 2 T T + 2

A = 4T3T5 + 4T3T + 12T2TT4 + 12' 23 T + 12TTT + TT

54 3  + 5 2 + 2 +lTTTT2  2 0T1T4  12 0T2T3  1 0 3 12 2 0T1

From equation (3)

T0 = T(O) + Lt g

Tn+I =At LxxTn - t 1An

From equation (4)

T0 = A + Bx -

T -I L-g + t 1L XLtTn + -L An

Here A and B are determined by allowing T0 or ¢I' the first or
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one-term approximation to T, to satisfy given conditions T(O,t) and

T(,t) for the truss member temperature. Since To  is now known in

both equations, the one-term approximate for T is €1, which is half -

the sum of the two f1's

Now we can calculate the two ul s and continue in the same manner

until we have an n-term approximation o* i.e., an approximation to

the correct temperature T which becomes more accurate as we go to more

j terms until there is no further change.

It will now be clear that the decomposition method is not only S

applicable to generic space structure thermal problems but provides an

extremely useful straightforward method as compared with ordinary numerical

1Z procedures.

Consider some examples carried out to a complete solution to

demonstrate the validity of these procedures.

EXAJLPLE 1:

Consider the application of decomposition to an equation

Uxx -uyy = 0 modelling a square plate with 0 <x < /2 and 0 < y r/2

with the given conditions:

u(O,y) = 0 u(n/2,y) = sin y

u(x,O) = 0 u(x,w/2) = sin x

In some special cases, one equation may not contribute because the
term is zero. Then we simply work with the remaining equation and the
adding and dividing is unnecessary. See example (4) on a following page.
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Let L xx = a2/ax2  and Lyy = 2/y 2  and write the above equation

as Lxxu = L yyu. As usual in the decomposition method, we solve foryye
each linear operator term, Lxxu and Lyyu, in turn and then apply

the appropriate inverse to each.

-1 L u -u k k C 1L u
xx xx 1 1(y) - c2k2(Y)X xx yy

C 1 L u = u - C3ka(X) - c4k4(x)y - 1 L u

yy yy yy xx

or

u = cIk 1 (Y) + c2k2 (y)x + C uL u (1) ,
xx yy

u c3k3(x) + c4k4(x)y + L 1 L xu  (2)yy xx

S

Define x = Clk 1(Y) + c2k2 (y)x and y= c3k3(x)+ c4k4(x)y

to rewrite (1) and (2) as

u L -+ L u (3) 5x + Lxxyy

U + L 1 L u (4)
y yy xx

One-term approximants to the solution u are uo --@ in (3) and

u0  in (4). Two-term approximants are u0 + U1  where u1  LxxLyyu
in (3) and C I in (4), etc. Thus u LL u in (3) and

Syy xxU n+l  xx yy n

L-L un in (4) for n > 0.

yy xxn

For the x conditions u(x,O) = 0 and u(x,n/2) = sin x applied

to the one-term approximant u0 -- clk 1(y) + c2k2 (y)x, we have

CIk l(y) = 0

c2 k2(y)ir/2 = sin y

)r OC r W" - .,

A L-S AA
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or c 2 =2/nT and k (y) =sin y.

For the y conditions u(x,0) =0 and u(x~n/2) =sin x applied to

u c3k3(x) + c4 k4(x)y, we get

c3k3(x) = 0

c4k4(x)rr/2 = sin x.

Thus c4 = 2/nr and k 4(x) = sin x.

If a one-term approximant were sufficient, the solution would be

(I (l/2){(2/Tr)x sin y + (21hr)y sin x)

The next terms for (3) and (4) respectively are

u = IL u= L 11 [c ysin x3

We continue to obtain u 29u39. ... Clearly, for any n,

un (LA y)nu0  c c(sin y)(_l)nx2n+l/(2n+l)!

u (L (VL )n u c4(sin )l y /2l!n yy xx 0 4(inynl( 2 ~)

Letting ~mrepresent the in-term approximant, we have for the two cases:

O= c2 sin y I (_l)nx2n+l /(2n+l)! (5)

=c 4 sin x I (_1)ny2n+l /(2n+l)! (6)

We can now apply the conditions 40 (ir/2 ,y) = sin y for (5); thus

*An n-term approximant is *n = ni

i=i.
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clkl(y) = 0

c2 sin y M (T1/2) 2n+1/(2n+l)! = sin y
n=O

c2 = m-1
I (_,)n(V/2) 2n+l /(2n+l) !

n=0

As m approaches infinite, we recognize the denominator as sin 7/2

so that c2 approaches 1 and the sum in (5) approaches sin x in the

limit.

Now applying the conditions *m(xO) = 0 and 4m(X,-/2) = sin x,

we have

c3k3 (x) = 0

c4 sin x I (-1)n(r/2)2n+ /(2n+1) = sin x
n=O

c 1= 1c4 rnm-l(I n(/2+/2nl)

n=O0

Again as m o% c4 -* 1 and the sum in (6) becomes sin y. We can now

write the exact solution

u = (1/2){sin y sin x + sin x sin y}
S

or

u = sin y sin x.

So for this case, the series is summed into a convenient closed form

solution.

leh

ju. A I -jl
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EXAMPLE II:

If we modify our example to u xx - y + f(u) 0 we let

f(u) = I A {f(u)}, i.e., f(u) is represented by the A polynomials
n=O n

generated specifically for f(u). Then the equations (3) and (4) in the

previous example become

u=x +  -C 1 un  C L- A A{f(u)}
S LxxLyy n xx 0 fn

n=0 n0
and

u y + L1 Lx I un + C-I A{f(u)}..
n=0 yy n=0o

and computation proceeds as before.

EXAMPLE III:

Now consider u u on 0< x < 7 with t > 0 specifying

u(x,0) = sin x u(0,t) = 0

ut(x,0) = 0 u(7,t) = 0

Decomposition yields

0l
u = Clkl(t) + c2k2 (t)x + L- Ltt n uo, (0

~0
u = c3k3 (x) + c4k4 (x)t + LiLxx, I un  (2)

In (1) the u0 = CIkl(t) + c2k2(t)x term vanishes when the boundary

conditions u(O,t) = 0 and u(r,t) = 0 are applied. Hence in this

V.'"

i ~ i" " "€ '/''). ' /" ¢'"r~ii" € - . ' " V¢. - . -,,-', , ..2 . t.'.." .'_-, _
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case (1) does not contribute and we need consider only (2). Here

u0 = c3k3 (x) + c4k4 (x)t and applying the conditions u(x,O) = sin x and

ut(x,O) = 0, we have

u0 = sin x

u1 - LT1L xu = (-t2/2) sin x

u2  LtILxxu- = (t4/4!) sin x

u - sin x cos t

Here, we recognized the series for cos t but ordinarily use the

series and see, most effectively, in numerical solutions that the
n-l

solutions stabilize as n increases, i.e., the approximant 4n = u.~i=0

converges to the correct solution u = u n .n--0

EXAMPLE IV:

We point out an example where one linear operator term does not

contribute. Consider the example Uxx = ut with given conditions

u(x,O) = sin 7x for 0 < x < 1

u(O,t) = u(l,t) = 0 for t > 0

We write

LxxU--Ltu (1)

Ltu =Lxx u (2)

IRM
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Applying the L1to (1) we havexx

u u0 + CL Lu

u A(t) + B(t)x = 0

because of the conditions u(0,t) = u(l,t) =0; hence this equation

doesn't contribute and under the rules of the decomposition method is not

considered in determining u.
01

From (2) applying L~ t, we have

u =u 0 + LV1 L u0 t xx

= u(x,0) = sin 7nx

ui=LL, 0  Lt x inr

-7 2 sin 7T

U2  t xxi1

Summarizing the series, we determine

U= e- 2t sin nx

is the exact solution since

u u0 + u +'

=sin rix - n 2 t sin rrx +

i= 21 - t + ---] sin rrx

where the bracketed quantity is the series for e-

R 0
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If we changed the x interval to (0,n/2) and specified

u(x,O) = sin x, u(O,t) = 0, and u(w/2,t) = e-t, we get a case which

is less convenient computationally because of the integration "constants."

We no longer have u0 = 0 for the Lxxu equation and must consider

both equations in determining the initial term uO.

Now u0 = (2/,T)xe
-t. When we determine u,, we get

-(2/)(x3/3!)e - + cl(t)x + c2 (t) because of the two-fold integration

represented by Cx.
xx*

When x = 0, u = 0; hence c2 = 0. When x = 7/2, u = e-t '

3 t
hence (2/r)(7r/2) (1/3)e -t + C1 (,/2) = e-

t determines cI, etc., and

we see this case will become numerically more complex. The solution

u = e-t sin x is still valid but not as simple to obtain.

We might also note that if u(x,O) is specified, then u is

specified at t = 0 and therefore ut(x,O) is specified through the

equation so we cannot independently specify ut(x,O). Thus the conditions 0

cannot be assigned arbitrarily and must of course be physically appropriate.

We can specify here the temperature u or the heat flow (derivative ux )

at both ends or, say, temperature at x =0 and heat flow at x =1 (rod

with uninsulated end).

13) Transient Heat Transfer: K. N. Shukla and L. Mani (AIAAJ, October 1984)

considered thermal constriction resistance with arbitrary heating in a

convectively cooled plate. Precise heat transfer calculations are, of

course, important to achieve reliability in space structures. The two- 'S

dimensional model considered in the above reference can be written in
%



76

2 22 2
our notation as: Le + Le = kLe where L a2/ax Lyy = /ay

We write immediately
S

L yy 0 U te - L xxII
L te6 kL L 8x0- -ILy

With our inversions

e =A +Bx +kU-L e - 1L E)
xx t xx yy

0 =C +Dy +kL 1LO L 0ILe
yy t yy xx

e = e(t = O) + k1 L1 Lxx e + k- Lt Lyye

where the functions A, B, C, D are determined from specified boundary

conditions (and the initial condition appears in the last equation for 6).

Once these boundary conditions are specified, the components of 0 are

determined by decomposition to some n-term approximation. These conditions

are:

ox = 0 at x = 0 and x

0(t = 0) is a specified function f(x,y)

e (y = 0) is a specified function g(x)
y

10 y + Bel(I 0

where a is a constant. *

'IleDecomposition calculations are simpler than by other methods, and, most

important, solutions especially in nonlinear or stochastic cases become
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more realistic. Of course, modelling is necessary before we can apply

any method and we must begin with a model. Now that we know decomposition

works, we need not begin with simplistic models.

14) Transient heat.condution: An equation describing transient heat

conduction is a region R is

v2u + k-l f(x,y,z,t) = c-1 au/at

u is temperature, k is thermal conductivity, and a is thermal

diffusivity. k and a are constants. Six boundary conditions and an

initial condition are required. (Such a problem is described by Beck in

AIAA Journal, 24, no. 2, Feb. 1984, pp. 327-333 with the use of Butkovsky's

Green's functions.) In our form, we write

[Lxx + Lyy + Lzz]U + k-1f = a-ILtu

We solve solve for the four linear operator terms, apply the appropriate

inversions, let u = un and f = A where the A are
n=O n=O n

generated for the function f.

LxxU = c-ILtu - L yyU - Lzzu - k-f

L u = c-L tu - Lx×u - Lyyu - k-f

L U a- 1 L u-L u-L u - 1 fLzz t xx yy

_ _u__ _ _ _ _+ a y y u L z z uf

A. G. Butkovsky, Green's Functions aiid Transfer Functions Handbook,
Wiley, 1982.
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or

U + al C 1L u -1 LU L-1 Lu kL-

u =OyY+ -1 -1 Lu L-1 Lu L-1 Lu kL-
yyt Y z yy xx y

u = + a CtL L u +CL 1 L u CiV 1 Lu klL 1 f

tsatisfies the initial condition u(x,y,z,O) and the 4x,' Y '

each satisfy two boundary conditions. The *X yy~ . *Zz are theu0

terms of the decomposition for each equation. Then since u I
CO n=O

and f I An the following components are determined. For example
n=O

u1  a J LXXLtut C LLyU - L ZuO - C LAxx y 0 xx z 0xxO0

u1  a ctL 1L L C-I L U -kL A
yytLLO k yy zzO0 yy xxO0 yyO0

-1
U1  atL Lzuo L iL L xu 0 cL 1L u k-LzA0

U, txx u0 At LyyO0 t LzzO0 k t A0

'Netc., for u 29 u3. .. .. The solution u is obtained by adding the four

equations for u and dividing by 4, or, as an approximation, by using

the four approximate solutions ~n

61.
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NONLINEAR OSCILLATIONS

Introduction: Practically all the problems of mechanics are

nonlinear at the outset. Nonlinear oscillating systems are generally

analyzed by approximation methods which involve some sort of linearization.

These replace an actual nonlinear system with a so-called "equivalent"

linear system and employ averagings which are not generally valid.

While the linearizations commonly used are adequate in some cases,

they may be grossly inadequate in others. Thus, if we want to know how

a physical system behaves, it is essential to retain the nonlinearity,

not just solve a convenient mathematized model.

Using the decomposition method, restrictive assumptions on nonlinear

and stochastic behavior for the sake of a tractable model, become

unnecessary; correct solutions are obtained in the strongly nonlinear

case and in the case of stochastic (large fluctuation) behavior, as well

as in the cases where perturbation would be applicable or in the linear

and/or deterministic limits.

We are concerned in this section with the study of vibrations or

oscillatory motion and the associated forces. Vibrations can occur in

any mechanical system having mass and elasticity. Consequently, they

can occur in structures and machines of all kinds. In large space S

structures contatining men or machinery, such vibrations will result

in difficult and crucial control problems and also lifetime or duration

considerations since vibrations can lead to eventual failure.

Oscillations can be regular and periodic, or they can be random.

Randomness leads to stochastic differential equations. In deterministic
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systems - the special case where randomness vanishes - the equations modeling

the system provide instantaneous values for any time. When random functions
S

are involved, the instantaneous values are unpredictable, and it is

necessary to resort to a statistical description. Such random functions

of time, or stochastic processes, occur in problems, for example, such as

pressure gusts encountered by aircraft, jet engine noise, or ground motion

in earthquakes.

Oscillatory motion is modelled by equations of the general form:

y + f(y,y',t) = x(t)

Fy = x(t)

Stochastic processes may be involved in coefficients, input terms, or

initial boundary conditions, so x(t) can be assumed to be generally

stochastic. Input conditions - possibly stochastic - are given (statistically

described if stochastic). Therefore F will be a nonlinear stochastic

operator with (possibly) stochastic coefficients. More conveniently, we

write Iy = Ly + Ny where Ly is a linear (stochastic) term, and Ny

is a nonlinear (stochastic) term, or

Ly + Ny = x.

Now, for the linear operator L, define L = L + R + R where: L is

a linear invertible deterministic operator, so that L exists; R is

the remainder of the linear deterministic operator, vanishing, of course,

if we can easily invert the entire linear deterministic operator, and R

is a (linear) stochastic operator.

S;

Iei

.S
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Similarly for the nonlinear operator N, define Ny = Ny + My since

there may be both deterministic nonlinear terms Ny and stochastic

(nonlinear) terms My.

Thus in general we rewrite our general oscillator equation as

Ly + Ry + Ry + Ny + My = x.

Note that in a particular problem any number of terms from one to four may

vanish. Still more generally, Ny may actually be a function of y,y',...

but we will again write Ny for simplicity. Calculation of the An for

such a case becomes more difficult and will not be discussed here. Our

purpose now is not discussion of the entire mathematical theory but

demonstration of applicability to space structures.

Convergence of the decomposition series can reasonably be expected to

be fastest when we invert the entire linear deterministic operator.

Computation of the integrals will, however, be more difficult should this

be the case, since the Green's functions will not then be simple. Thus,

for ease of computation we will let L denote the highest order differential

operator or d2/dt2  in the above oscillator equation.

Let us review the significance of the mathematical expressions we

will deal with in order to make the work as clear as possible. In an

oscillator, we have generally an external force or driving term x(t), a

restoring force f(y) dependent on the displacement y, and a damping

force, since energy is always dissipated in friction or resistance to

motion. Usually this is dependent on velocity, and we will write it as

g(y').

If we have a free oscillating mass m on a spring with no damping,

we can write

--
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my" + ky =0

if the spring obeys Hooke's Law, i.e., assuming displacement proportional i

to force. Of course, no spring really behaves this way. Often the force

needed for a given compression is not the same as for an extension of the

same amount. Such asymmetry is represented by a quadratic force, or force

proportional to y2  rather than y. We may have a symmetric behavior

with proportionality to y3 . In this case, while the solution is not the

harmonic solution which one gets for the model equation my" + ky = 0,

it is still a periodic solution. The damping force g(y') may be cy'

where c is constant, or it may be more complicated such as a nonlinear

function of y or its derivatives, e.g., g(y,,y,2) so that it depends

on v as well as v. By usual methods, analytic solutions then become

impossible, i.e., we can not deal analytically with such a case unless we

resort to linearization.

If we write -f(y) for the restoring force, -h(y') for the damping

force, and represent the driving force with g; the resulting equation

will be

y + f(y) + h(y') = g

Suppose the restoring force is represented by an odd function such that

f(y) = -f(-y). We have this in most applications; it means simply that

if we reverse the displacement, then the restoring force reverses its

direction. A pendulum, for example, behaves this way. We might take the

first two terms of the power series for f(y) and write f(y) = ay + By3 .

Then we have

y" + ay+y 3 =g

* - r -J
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If we have damping also, we have

y" + cy' + + ay3 = g

assuming the damping force is -cy'. (This is Duffing's equation.)

We will begin - after a simple example of a pendulum (harmonic

motion) - with the well-known anharmonic oscillator then go on to

consider more general oscillators such as the Duffing oscillator and

the Van der Pol oscillator. The Duffing oscillator in a random force

field is modeled by y" + cy' + By + yy3 = x(t). It can be analyzed

without limiting the force x(t) to a white noise or restricting a, B,

y to be deterministic. The same applies to the Van der Pol oscillator

modeled by y" + cy2y, - Ey, + y = x(t). These equations are in our

standard from Fy = x(t) which can be solved by the decomposition

method. If the equation is linear and deterministic, we have Fy = Ly x.

An equation that is deterministic but nonlinear can be rewritten as

Fy = Ly + Ny = x. A linear stochastic equation is Ly = x, etc. These

cases are discussed in the earlier work. Consider the pendulum problem

as an example, then we proceed with the anharmonic oscillator.

A Simple Nonlinear Oscillator Example:

Consider the simple vertical 
pendulum consisting of a mass 

m at 0

the end of a rod length t moved through an angle 0. We obtain

immediately

d2e/dt2 + k2sin 0 = 0

whr 2 2
where k2 = g/t. Let L = d/dt and N(O) = k2 sin to obtain our

usual standard form LO + NO = 0 for a homogeneous deterministic

differential equation.

. PNw I

%
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malZ-aplitude case: The usual treatment is to simplify this

anharmonic motion by assuming sin 0 0. We can then write d2e/dt2 + k20 0,

the well-known harmonic oscillator problem. L is defined as before, but

now there is no nonlinear term, and the remainder of the linear term is Re,

i.e., the entire linear operator is decomposed into L + R where R is

a linear deterministic "remainder" operator. Define L-l as the double

definite integration from 0 to t. If we have a forcing term as well,

we would have Lo + Re = x(t). The solution is found by writing

Le = x - Re

C LI = e - 0o) - te'(o) = x - L1 Rl

0(t) 0- L 1Re

with B0 = e(O) + te'(0) + C x(t). Now substituting 0 = . (t),

we find

0n>l n-Rn

so that all components can now be determined.

Let us assume initial conditions are given as e(O) = y and

e'(O) 0. Then, since x = 0 * .

00 = y

01 = -_ Re 0 = L k2y = -yk2 t2/2!

02= -L- Re1  -LIk2 (-yk 2t 2 /2!) yk4 t 4/4!

03 -yk6t6/6!3 %;
&
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We have

en =y(-, )n-l(kt) 2n-2/(2n-2)!

O Y I (-l)n- (kt)2n-/(2n-2)!
n= 1

Thus 8 y cos kt with k = (g)1 .

If we assume initial conditions 0(0) =0, 0'(0) =w, we obtain

0= At = (w/k)kt

01 = -(W/k)k 3 t3/3!

0 2= (W/k)k 5 t5/5!

0n= (w/k)(-l)n-I (kt )2n-I /(2l-l):

and finally,

0(t) (w/k){kt - (kt) /3! + (kt) /5'. .

(wik) (_)-I(t 2-1 2n1.

O(t) = (w/k) sin kt

The case e(0) = y, and 0'(0) =w yields

00 =y + (w/k)kt

01 -L R[y + (w/k)kt]

e -Y(l P-1(kt) 2-2 / (2n-2)'.

+ (w/k)(-l )n-l (kt) 2n 1 /(2n-l)!

d'~~~~ '- 1FV "
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or

O(t) = y cos kt + (w/kj sin kt

S

the well-known general solution of the harmonic oscillator.

Large-ampitude case: We can generalize to the anharmonic oscillator

describing the pendulum problem for large amplitude motion, the only

difference being that since we now have a nonlinearity, it must be

expressed in terms of the An polynomials.

Consider the equation now for large-amplitude motion in the

pendulum

d2 0/dt 2 + k2 sin 0 = 0

with k2 = g/t. Let L6 = d20/dt 2 and N(O) = k2 sin 0. We let the

nonlinear term NO be represented by the sum of the An  polynomials

generated fro the nonlinear term as usual in the decomposition method.

Thus NO = n10 An where the An are given by:

A 0 =sin 0

A1 = 01 cos 00

A2 = -(01/2) sin 0 + 0 Cos 0

2 (0 0 +2 cs 0

3A 3 =(0 1/6) cos a0 0 10 2 sin 0 0 + 0 3 Cos 0
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This equation is a nonlinear deterministic homogeneous second-order

differential equation. We must assume appropriate initial conditions.

We will choose here e(O) = y = constant and e'(0) = 0. We can do it

just as well for other combinations of initial conditions, of course,

as will be obvious. We now have

L = -N(e)

Operating with the inverse of L, a two-fold integration, we have

e = 0 - L1N(e)

where

e0 = 6(0) + te'(O)

which in our case is just y. The N() term - we will henceforth

drop the parentheses - is replaced by the I An* We now have
In=O

e = y - L I An(k2 sin e)n=O

We prefer to write

0= y - L' 1 An(sin e)
n=O

i.e., we can let Ne = sin 0 rather than k2 sin 0 since k2  is a

constant. The corresponding A n(sin e), or simply A , are [1]:

A0 = sin 00

A1 = e1 cos 00

A2 = -(2/2)sn e0 + e2 cos 0

A3 = -(o /6) cos 0 - 0102 sin 0 + 03 cos 00

3 0 el2 0 3
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Hence,

01 --1 A 0

0 2 C A1I

etc., to yield

01= - dt ft dt k2sin e0. ft dt ft dt k i

= -(sin y)(k 2 t2/2!)

0 2= - J dt ft dt k 2(61 cos e0)

= - J dt ft dt k 2[_(k' t2 /2)sin -y] cos y
= (k 4 t4/4!)sin y cos y

03 = - J dt ft dt k 2[_(e2 /2)sin o+0CO0]
= -(k 6 t6/6!).[sin y cos 2 y, - 3 sin 3 A]

etc. Thus,

0(t) =y-[(kt) 2/2.]sin -y + [(kt) 4 /4sin y cos y

- [(kt)6/6:)][sin y cos2y - 3 sin A]

+ [(kt) 8/8!][-33 sin 3 y cos y + sin y cos 3 yA

i.e., we have the solution for large-amplitude motion.
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As a check we can let y be sufficiently small so that small amplitude

motion is being considered. Then

e(t) = y[l - (kt)2 /2!) + (kt)4/4!

which is, of course, the result for the linear harmonic oscillator with

the given initial condition.

15) The Duffing and Van der PoZ Osiltatore: In the preceding section the

decomposition method was applied to harmonic and anharmonic oscillators.

We now apply it to the Duffing oscillator and the Van der Pol oscillator.

It requires no linearization or "smallness" assumptions. The treatment

can also include randomness in coefficients or inputs without customary

restrictions to special processes or perturbation theory.

When we consider, for example, the equation for a simple pendulum, we

approximate sin x by x to obtain the harmonic oscillator equation.

Suppose we go a step further and write sin x = x - x3/3:, i.e., use the

first two terms of the series for sin x assuming small x. We then

get the equation x" + W2x + Ex3 = 0, which is the Duffing equation with c

as a "small" parameter. This is an example of a perturbation method; one

would seek a solution in the form x(t) = xo(t) + Cxl(t) + .... Using

decomposition, we are not restricted to assuming small parameters.

StatioticaZ Linearization: In dealing with stochastic oscillators, we

depart again from usual procedures which require some sort of approximation

'~ ,. *%.* .
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in order to determine the second-order response statistics. A common

procedure in this connection is statistical linearization. This procedure

simply replaces the original nonlinear equation with a so-called "equivalent"

linear system. Thus, if we write an oscillator equation in the form:

X1 + ax' + w 0x + Of(x) = F(t)

where x(t) is a displacement, a is a damping constant, w0 is a

linear frequency, Sf(x) is a nonlinear restoring force, and F(t) is

a stationary process, the process of statistical linearization substitutes

x" = ax' + y2x = F(t)

where y2 is determined in such a way that the mean square error

due to the replacement is minimized, and the mean displacement is the

same for both systems. It is customary to assume F(t) is Gaussian ande delta-correlated with zero-mean, or, <F(t)> = 0 and <F(t)F(t')> = D6(t-t').

This latter assumption is, of course, made for mathematical, not physical,

reasons and is physically unrealistic. We propose none of these

restrictions and will solve the actual nonlinear equation.

The Decomposition Method: The Duffing Oscillator is described by

the equation:

Y" + ay' + Oy + yy3 = x(t)

In our standard Fy = x(t) form.
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5 The Van der Pot equation is generally given as:

y,,1 + Cy2y, y, + y = x(t)

or by

y" + C -Y 1) + y = x(t)

which we can write in the form

y" + ~ay' + By + y(d/dt)y3 = x(t)

since y2y, = (d/dt)(y 3/3). Thus a -c, a = 1, y c/3 relates

the last equation to the two previously given forms. We now have our

standard form Fy = Ly + Ny = x, or Fy = Ly + Ny = x (if no stochasticity

is involved). Here L is assumed to be a linear and invertible operator

and N is a nonlinear operator. We will consider the equations to be

deterministic here.

The linear operator L in both the Duffing and Van der Pol oscillator

equations is given by d2/dt2 + ad/dt + 0. The nonlinear term Ny is a

simple cubic nonlinearity yy3 in the case of the Duffing oscillator, and

y(d/dt)y3  in the case of the Van der Pol oscillator. These terms will,

as usual, be expanded in our An polynomials generated for the specific

nonlinearity.

The treatment of the linear operator offers some alternatives. We

can use the entire linear operator as L which enhances speed of

convergence, but the inverse and consequent integrations become more

difficult. We can also use part of the above operator which could be

L = d2/dt2, L = d2/dt2 + ad/dt, or L = d2/dt2 + B. We prefer in most

cases to use L = d2/dt2, i.e., the highest order differential operator.

"4
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We expect this to give the slowest convergence but much easier integrations

and less actual computation time.

The remainder of the linear operator will be called R, the "remainder"

operator. If L = d2/dt2, R = cd/dt + B. (If we also consider stochasticity,

we will use a script letter R for a random part of the operator and may

have L + R + R.)

The choice made here (that L = d2/dt2 ) yields the simplest Green's

function for computation. In this case, L-I is the two-fold definite

integral from 0 to t. Generally, this choice of the highest ordered

derivative for L is the most desirable because the integrations are

the simplest. If we invert the entire linear operator, convergence is

expected to be much faster. It is interesting to examine a compromise

here which can be used to advantage on occasion.

If we choose L = d2/dt2 + a, R = ad/dt, we gain something in

convergence rate over the previous case and expect to lose something

in ease of computability. The interesting aspect that suggests the

compromise is that we see we will get sine and cosine functions for

solutions of the homogeneous equation. For the Duffing equation we now

have

Ly = x - Ry - yy3

y =ci1p(t) + c 22t ) + L'1x _ LRy 13yL-ly3

where *l' *2 satisfy LO = 0 or d2 /dt2 + = 0. Consequently,

01(t) = cosvrt

02(t) = (I/v) sin V/t
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Now

I y 1' c M(t + C2 (t + Clx - ClR - yL1  Y A 4
n=0 n 101 22(t)n=0

or

n~ yn = c, os Va-t + (c2lvW) sin ,Tt + CL

- C*V(d/dt) Y y~ - yV1  0 ~A

where the A are the appropriate polynomials for Ny =y3 Thesen

are given by:

A0  0

A 3y2A2 = yi yy

2 22

A4  34y y + 6yoyy + 3yy

A3 2 y 2 2Y
A y 2+ 3y~y2 + 6y~yly 3 + 3y2yy yy

32 2 2

A6  y3 + 6yyy + 3y2y + 3y y2 + 6y~yy 6yoyly + 3y2y

Since L =d 2 /dt2 + gnow, Cl is no longer the simple two-fold

integral, and we must determine the Green's function for this L. The

G will satisfy the equation LG(t,T) = 6(t - -T) or

d2G(t,T)/dt2 + sG(t,T) =6(t - T)

..... . . . . 0
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G, of course, is determinable in a number of ways. We will again use

the decomposition method itself and so we prepare by writing

d2G/dt 2 = 6(t - T) - aG

Again we have a simple second-order operator to invert. Hence

G(t,T) = G(O,T) + tGt(0,T) + L-16(t - T) - n Gn

Thus

Gn = G(0,T) + LGt(0,t) + L 1 6(t -T) - OL Gn= 0  
n= 0 n

G- L 1  Gn
n=0

where

G = G(0,T) + Gt(0,T) + tH(t - T)

and

G- _ L -G = -{G(o,i)tj 2! Gt(0,T)t3

+ (t3/3!)H(t - T)}

=2 ~ 3. g3-sG(0,T)[t /2. + t /3!] - B(t3/3!)H(t - )_

etc., for G2, G3, .... An appropriate n-term approximation can now be

used in the C integrations.

The example my" + w2y + ay3 = 0 occurs in the theory of nonlinear

vibrating mechanical systems and in some nonlinear electrical systems

which is the Duffing case above (with no damping). Suppose we have the -

specified conditions y = a at t =0 and y' =0 at t =0. Write

L = d2/dt2 and
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Ly -( (2/MY - (c/m)y 3

y =Y(O) - CLI(W 2 /m) I y~ (ct/r) I

n=o n=o

where yo=aI

Y, = - W/m)L -Y. (c/m)A 0

=-aw 
2t 2/2mn - ca3 /M

so that y a[1 W- /m a 2 / .

Solution of the General Case of Duffinq's Equation: For the Duffing

equation with L = d /dt2  we have y I y n~ where
n=o

YO= y(O) + ty'(O) + L -1 x(t)

Y2= -L -1a(d/dt)y I - CLI y, - CL1yAj

Y3= -L -1 ct(d/dt)y 2 - CL1 6Y2 - C~ yA 2
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Solution of Van der Pal equation: For the Van der Pol equation, we

have

Y= Y(O) + ty'(O) + L X(t)

Y= _L_ 1 (d/dt)yo C IN8y - y(d/dt)A 0

=2 -L a(d/dt)yl C a y1 - L y(d/dt)A 1  Y

etc.

16) Stochastic Osciliations: We could also have stochastic fluctuations

in ot, 8, or y in addition, of course, to stochastic x(t) or initial

conditions. Thus, in general we could write

a =<a> + C

8 <6> +p

y <Y'> +Q

where c, n, a are zero-mean random processes. The solution process can p%

now be obtained from

Ly =x - a(d/dt)y By- y I An
n n .

-E(d/dt)y -ny -a I A
n=0 n

% %
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where the An summation represents y in the Duffing case and (d/dt)y3

in the Van der Pol case. Thus,

Y y(O) + ty'(O) + C x

Yj = -a(d/dt)y0 - aY0 - yA0

_ (d/dt)y0 - rLy0 - oAO

Y2 = -cX(d/dt)yl - ay, - yAl

- E(d/dt)y I - nyI - oAl

Thus the summation of the above terms to some yn is the solution of both

oscillator equations except the An are different, of course, as explained

above. Then y(t) =I0 Yn(t) yields a stochastic series from which

statistics can now be obtained easily by averaging without problems of

statistical separability of quantities such as <Ry> where R = c(d/dt) - n

which normally require closure approximations and truncations.

Retark: When transient behavior becomes oscillatory and periodic

after a certain time, we can then consider it as a boundary-value problem.

Sometimes one can obtain a solution for the oscillating behavior

directly starting with the transient behavior. In other cases it may

have to be approached separately. -

1N -"



98 .O

COMPUTATIONAL ASPECTS OF STRUCTURAL MECHANICS

These have been recently discussed by Noor and Atluri. In proposed

large flexible space structures, supercomputer simulations will be

important but are likely to be so large and complex that any means of

reducing the computational effort needs to be a paramount objective. The

discretization inherent in the computer techniques makes it difficult to

see dependences or gain insight into the nature of the response and,

further, enormously increases computation as grid spacing is decreased

for accuracy.

The decomposition method provides continuous rather than discretized

solution - a solution in analytic form - with an enormous potential

saving in computation. This feature, as well as the natural, and physical,

treatment of nonlinearity and stochasticity in the decomposition method,

and its computability provide a powerful new tool for structural analyses.

17) Stochastic StructuraZ Dynanics: The equation Fu = g(t) can represent

a generic problem in vibration where F is a nonlinear stochastic

operator and g is a stochastic process. Suppose Fu = Lu + Nu where L

is a linear stochastic operator and Nu is a nonlinear (and possibly

stochastic) term. L can be further decomposed into L + R + R where

L is a deterministic operator-specifically the highest-order linear

differential operator - typically d2/dt2  in a vibration problem, R is

the "remainder operator" representing the remaining portion of the linear

and deterministic operator. (This device removes the necessity of

L4.
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determination of the Green's function for the entire linear deterministic

operator), and R indicates a stochastic operator. S

If we consider, for example, the equation

m (t) + a '(t) + b y(t) = f(t)

and divide through by m, we can write now

M(t) + a '(t) + a y(t) = C(t)

Let L = d2/dt2, R = a d/dt. Now we will assume for an example that a

is constant but a is a random process 8(t) which quite reasonably, is

assumed statistically independent of the input process g(t). In the

decomposition notation consistent with the notation in the literature,

we let R = 8(t). We have

Ly + Ry + Ry = g(t)

Ly = g - Ry - Ry

Y= A + Bt + C-Ig

Yn+l -L 1Ry n- L 1Ryn

YO is known as soon as specific initial-boundary conditions are given.

All following components are determined for n > 0. Now y = n=O Yn
=n-l

and an n-term approximation is given by n 1i=O Yi" Now the

n =
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expectation of y is approximated by <0>. Second-order statistics

are also determinable - the correlation K(t1 ,t2) is given by

<On(tl) n(t2)>. This method avoids all the usual restrictive assumptions

and there is no statistical separability problem which ordinarily leads

to closure approximations in averaging or hierarchy methods. Conventionally,

stochastic structural dynamics can only allow the system input g to be

stochastic. The decomposition method treats linear and nonlinear equations

without closure approximations or perturbation. In addition, randomness

can be considered in parameters or conditions. These cases are simply

described in (2].

Orada and Haftka point out (in the AIAA Journal, vol. 25, no. 8,

Aug. 1987, pp. 1133-1138) that in active vibration control, because of

the interaction between the structure and the control system, simultaneous

optimal design of both systems may be necessary. (More traditionally,

the structure is optimized to minimize weight subject to the stress and

stiffness constraints while the control system is optimized to minimize a

performance measure involving deformation and control effort.) Such

simultaneous optimization is discussed in the referenced paper using white

noise inputs and linear control theory. We would point out only that a

more powerful tool has now become available for such optimizations. We

have seen now that the control theory can be made nonlinear and stochastic

through application of the decomposition method without the use of

numerical methods and we will be able to pursue this when funding is

available.

The decomposition method allows more realistic models, eliminating

restrictive mathematical assumptions. As an example, consider the
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equation: X + ax + ax = g where vibrating motion in the x direction, ax

is the damping force and ax is the restoring force. Initially the system is

at rest so x(O) = x(O) = 0. We can assume a, 8, g, or any combination, to

be stochastic. The widely-used averaging or hierarchy methods of determining

statistics (seeking moments of the solution process directly) lead to

unjustified closure approximations. Using decomposition, we do not need to

require stationarity which is physically unlikely and mathematically restrictive.

Perturbation methods work best in cases where fluctuations are small. In the

perturbative case, one is assuming corrections to a deterministic solution are

minor.

In a space borne effort costing many billions of dollars, it is

essential that we seek physical solutions rather than mathematical solutions

to models assuming processes that either do not exist in nature or exist

in cases of minor vibrations. The mathematics must take into account any

possibility of vibrations or effects which could lead to destabilization.

To recapitulate, we have here a second-order linear oscillator with

stochastic parametric and external excitation. We can write

+ (a0 + +') 0 + B+ ')x = g

where a = <a>>, ', B', and g are statistically

independent stochastic processes with given statistics to second-order.

Conventional analyses assume white-noise processes which is neither

physical nor necessary. Using L for d /dt2 , we have

Lx + a 0  + V +a' + 'x = g

Let R = d/dt + B0 and R=a d/dt + B' to write

114
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Lx + Rx + Rx = g

or

Lx = g - Rx - Rx

which is immediately solvable by decomposition as we have seen from previous

examples. All that is necessary is operation on both sides with C

decomposition of x into Ex n  and identification of the x0 term to

include L-1g and the initial condition terms. It remains solvable

even if we add a nonlinear term Nx (without assuming weak nonlinearity).

S 1$-

A'
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ACTIVE DAMPING OF RESPONSE OF LARGE SPACE STRUCTURES

Large space structures are necessarily flexible so that measures must

be taken to minimize structural dynamic response to orbital corrections.

The problem of active damping to transient response is considered, e.g.,

by Chen (Int. J. Spacecraft, 21, no. 5, Sept-Oct 1984, pp. 463-467). Let

us consider a relevant model equation derived by Chen:

d2u/dt2 + Elul(du/dt) + u = 0

for which Chen finds an "equivalent linear" equation. By decomposition

we instead write

Lu = -u - eIuI(du/dt)

u = A + Bt - L 1u - Ll u l(d/dt)u

u0 =A + Bt

uI = -L -1u U _ L-A 0

u = -L-ul _ ELIA
U2  A1

where the An are derived for IuI(d/dt)u. Thus no linearization is

necessary and we can see, in distinction to numerical solutions, how the

solution depends on parameters and how a change in the model can affect

the solution. In addition, of course, we can see the effect of linearization

by comparing our solution with linearized solutions. We have seen in an

earlier table (p. 31, 35) that the effects can be quite significant. We

.I
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are not commenting on this particular stiffness control scheme but only

pointing out that we now have a better solution procedure for any such

model. This, of course, was the objective of Phase I. In further work

now, we can implement the new methodology on computers for application

to real structures being designed by aerospace contractors.

U

I*

Also we have seen how we can generalize control theory to apply to
nonlinear, stochastic, and distributed cases by analytic rather than
numerical procedures. This was not a part of our objective but it turned
out an unexpected benefit of considerable significance.

9
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A final ex4nple and general remarks:

As a basis of discussion and pertinent remarks, let us look at a

rather general nonlinear partial differential equation of the type that

could arise in some space application. Let us consider the (parabolic)

equation

ut - auxx + f(u,t,x)ux = 0

on a defined finite region on R with t > 0. Assume a is a constant,

f is a smooth function of t,x,u, and the initial/boundary conditions

are given.

Of course, to obtain a quantitative solution, the specific form of

f is required which is known when we have a particular model to solve. Since

each model will be different, we have tried to show how any model can be

calculated. When f is given, any separable terms in x and t will be

designated by -g(x,t) and any remaining term dependent on u, and multiplying

ux can be written N(u,ux). Let Lt = 3/at and Lxx = 32 1x 2 and write ~U

L tu - aL xx u = g - N(U,U x)

The decomposition method solves for each linear operator term in turn;

thus

In zero-gravity environments, heat transfer is thought to occur
only by radiation or conduction. However, it is possible that heat
transfer by convection can also occur, e.g., in heat pipe technology
for cooling space stations sometimes used in satellites. Thig can orcur
if fluids are involved, perhaps in machinery. Rapid heating near a
boundary can cause pressure waves producing a velocity and heat transfer
by convection. For such a convection-diffusion process, we get a
parabolic equation of this form.

IM

I



106

Ltu g + cLxxU - N(u,u x )

L xx U =-c-lg + a'lLtu + -1N(uux)

The inverse L l for the operator Lt is an integration; similarly

Lx1 is a two-fold integration since Lx  represents a two-fold differen-

tiation. Since Lt1Ltu = u A = u u(x,O) and C-1IL u u - B - Cx,

we obtain

u = A + Ltl1 g + AILtuxx u - Lt1N(u,ux)

u = B + Cx - a-l + u + N(UU xL 1C 1
xx xx t xx x

A is the initial condition, B and C are evaluated from the remaining

two conditions. We add the two equations for u and divide by two,

obtaining a single equation for u. If we define

u0 = (1/2)fu(x,O) + B + Cx + LIg - Llg)

K -(1/2){cL 1L + 1L xLt

G =-(1/2)[L-1 -1C1

we have

u = u0 + Ku + G • N(u,ux)

The solution by decomposition is u = u un with the given u0 and the
n=0

remaining components given by

u n+l =Ku n +GAn

for n > 0, where the An are the polynomials defined by the author
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in [l] for N(u,u x), i.e., N(u,ux) = I An . For analytic nonlinearities

for which the Al can be determined and for specified initial/boundary

conditions leading to a convergent series, the solution is u = u n ,

n-l 
n=O

although an n-term approximation n = . ui for some n serves as a
1=0

practical solution, usually with relatively small n, as seen in [1].

The solution can also be made by operating on the equation

Ltu- aLx u = g - N(uux) with (Lt_ -aL- ).t xx t xx

Though the result is the same and t, *x are evaluated from the

given conditions, writing u0 as

Uo= (i/2)(Ot + Ox) + (1/2)(L-I _ a-ILxx)g

means the result is not limited to the given parabolic equation - the

derivatives could be of any order - the operator L represents the highest-

order derivative. In this particular case we used the double subscript

Lxx to denote a second-order derivative. The An can be generated for

wide classes of composite nonlinear functions [1,2]. Thus the method

is quite global.

When solutions are obtained, we find they converge, generally

with extreme rapidity, so a few terms of u = u u suffice, i.e.,
n=On
n-l

we use a practical (n-term) approximation u I ui. If we take n
i =0

very large, this approximation approaches ui which is the definition
i=O

of u. We are dealing with physical systems with bounded inputs, analytic

nonlinearities for which the An can be determined, and specified

initial/boundary conditions, assuming integrability of the forcing
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function - all physically reasonable conditions to get convergence.

In stochastic cases, the series is stochastic and from the approximate u,

we can determine expectation or covariance.

,~.~

I
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INTRODUCTION TO THE PROBLEM OF CONTROL

The control problem involves not just solving a differential equation s

- the state space equation - but finding a solution satisfying a

performance functional or criterion to be minimized (such as least fuel,

least cost, least time, etc.). Bellman has discussed the differential

equation dy/dt = g(y,r), y(O) = c and the criterion equation

J(u,v) = J h(y(t), r(t))dt1  + k(y(T))

viewing r(t) as a point in function space and setting the variation of

J equal to zero to obtain a necessary condition for the determination of

r(t). This procedure yields the Euler equation and some auxiliary

conditions which convert the problem of minimizing the integral functional

to that of solving a set of differential equations for y and r. These

equations are nonlinear and subject to two-point boundary conditions.

Since the decomposition method has been demonstrated to yield solutions

for formerly analytically intractible nonlinear or stochastic equations, !

it is clear that a viable approach to the general control problem is

possible. The difficulty previously was not the formulation of the

Hamiltonian approach but the inability to solve stochastic or nonlinear

equations as they are or a global approach to partial differential a

equations. The problem has now been shown to fit in the format of the

decomposition method.

Thus one can consider a state space equation of the form

f(x1,....,Xn; ul,. .. U t) and general performance criterion functions

J extending to the stochastic and multidimensional cases for application

to space structures. The next section considers our approach to the analysis.

9
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AN OUTLINE OF OUR APPROACH TO CONTROL

Suppose we consider a nonlinear, possibly stochastic which we want

to control in some optimal way. For a linear control system with a

quadratic performance index, of course an analytical solution can be made.

Consider the state equations .

()= f(xl,...,Xn; Ul, ...,qUm; t)

n

i.e., a set of n nonlinear differential equations with x(t) representing

a state vector with n components fl,...,fn, and x(t0 ) a given initial

vector. Define, for example [4] a performance functional J(x,u,t) given

by

J= [x(tl), tl] + F(x,u,t) dt

where 0 and F are scalar functions with necessary smoothness pr, perties. 5

Let P = [Pl"" be a vector of Lagrange multipliers and form an

augmented functional

J, = 4[x(t1), ti] + [F(x,u,t) + pT (f-k)] dt

Integration by parts leads to

J' = -[PT x] It + t [H + PT x] dt

with H defined as

H(x,u,t) = F(x,u,t) + pTf

If u is defined on t0 < t < ti, we vary u and find the variation

6J' corresponding to 6u, leading to the n adjoint equations,

I
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so we have a system of 2n nonlinear differential equations with two-point

boundary conditions. Although this approach has been discussed by

R. E. Bellman and many others perhaps most recently in [4], analytical

solution has usually not been possible except by numerical methods. We

now have a promising and potentially valuable alternative since such

systems of nonlinear differential equations have been solved (even for

the stochastic and/or multidimensional cases) in an analytic approximation 6

by the decomposition method [1-3].

Another possibility is through solution by decomposition of the matrix

Riccati equation which appears in invariant embedding and neutron transport

theory as well as modern control theory. Consider

R'(x) B(x) + D(x)R(x) + R(x)D(x) + R(x)B(x)R(x) S

R(O) = 0

where B, D, R are continuous n x n non-negative matrices. Suppressing

the argument x, we have

R' = B + DR + RD + RBR

If L d/dx

LR = B + HR + NR

where LR = R', HR = DR + RD, and NR represents a nonlinear operator

on R. Since R(O) = 0, operation with LI on both sides yields

LIB + L 1HR + L1 NR.

SN
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Let R dfld NR be written in terms of the A npolynomials. For R this

is equivalent to writing R = R. For NR we write A Identify
n 0 n 0

R= IB then

-C1 -

R=ICL HRQ+L CA 0

-C1 -RI+ 1

Rn= L HR1 +- L An-

for n > 1. The A n for NR are given by [1]

A 0 = R 0BR 0

A= R BR + R BRQ

A2 R RBR1 + R BR2 + R BRQ

A 3  R 0 BR 3 + R 3BR 0 + R IBR 2 + R 2BR 1

A 4  R R2BR 2 + R 0BR 4 + R 4BR 0

+ R BR3 + R BRJ

so that l

R = CJ1HR + C R BR
1 0 0 0

R 2 = lHR I + L -1(R 0BR I + R IBR 0)
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R= CVI HR2 + C I(R BR1 + R BR2 + R BRQ)

Finally, since HR = DR + RD

R 0  L- B1

R I VC (DR 0 + RQ0D) + C~ (R 0BR 0)

R 2 LC(DR I + R 1D) + CV (RQ0BR 1 + R 1BR 0)

R 3 + L (DR 2 + R 2D) + CV (R 1BR 1 + R 0BR 2 + R 2BR 0)

n-I C
An n-term approximant is n I which approaches R I R R

i =0 i=On

as n - .Thus given B, D, a specific R can be calculated to a desired

approximation. Accuracy has been demonstrated in [5].

6hi r



0

114

FINAL REMARKS

When we study a physical system, we must simplify the actual system

with an idealized model represented by a set of equations which can then

be solved by available techniques. Thus, modeling is always a compromise

between a sufficiently realistic representation and tractability of the

resulting equations. The real test is whether the resulting solution

yields results in close conformity with the actual physical system. As

our ability to solve more complicated equations increases, we become less

limited in making our models physically accurate. Thus, as computers have

grown in capability and speed, there has also developed an increasing

reliance on them. This dependence has in some cases given rise to an

attitude that analytical solutions are neither possible nor really

desirable. It is indeed correct that closed form solutions are generally

not possible, and that everything else can be considered "approximation."

Yet, all modeling is approximation, and closed form solutions mean very

little. Linearization, for example, is a general procedure and has

contributed much, but the linearized model is not the same problem and

may lose important aspects of the real behavior. When we consider that

closed form solutions result from changing the physical problem until

the equations are sufficiently simple, we realize that we are solving a

different problem.

We have demonstrated that the decomposition method allows physically

realistic and accurate solutions of the types of vibration, heating, and

control problems which will arise in the analysis of large space structures

planned for the next two or three decades. The severe requirements imposed

by the sizes, weights, necessary stiffness, and specifications on thermal

0



115

and mechanical distortions make this methodology essential because of its

particular features.

The chief advantage is that solution of nonlinear problems and/or

random problems is possible without linearization, assumption of weak

nonlinearity, perturbation, assumption of special (and unphysical

stochastic) processes, or classic numerical methods. The elimination of

the restrictive assumptions and limitations of usual methods will reduce

computational effort and add certainty to the design optimization process

of rapidly maneuvering space structures.

It is essential in dealing with the complex interdependent problems

arising in contemplated space structures that we make physically realistic

solutions, not mathematical solutions of models which have been made

solvable by restrictive assumptions. Numerical solutions by super-

computers have brought us far but have drawbacks of sometimes excessive

computer time and a lack of insight into functional dependences. We

need insight into performance and correct solutions of the physical problems

to prevent failure in operation. The decomposition method allows us

a new and valuable alternative to be used by aerospace contractors.

I_
0
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A LOOK AHEAD

So far, we have shown in the analysis of problems arising in space

structures that the decomposition method provides efficiency and accuracy

as well as other important advantages. These advantages are insight into

functional dependences, physically more correct and realistic solutions,

and a considerable potential savings of computational effort. This work

applies to the response of nonlinear structures involving random vibrations,

fluctuations of parameters, thermal response in problems involving random

or temperature-dependent thermal conductivity, radiative transfer, and

control.

Two additional avenues have become apparent. First, a major

generalization and extension of control theory to the analytical solution

of the nonlinear stochastic multidimensional case has now become possible.

Second, programming of the decomposition method is essential now. We

believe this will be a major step with significant advantages over numerical

methods now in use.

Both of these are of crucial significance to programs such as those

contemplated by SDIO. The computer implementation of decomposition will

allow us to consider problems of greater complexity and general contractor

models. The control theory will allow us to do the problems of distributed

nonlinear stochastic control essential for space structures. Both should

be pursued as separate projects to be brought together for Phase III type work.

The overall program is intended to allow the solution of any specific 0

problems -)f interest in real space structure models of interest to Air Force,

NASA, or space station contractors.

9
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